Arbuscular mycorrhizal fungi suppress ammonia-oxidizing bacteria but not archaea across agricultural soils
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38444950
PubMed Central
PMC10912043
DOI
10.1016/j.heliyon.2024.e26485
PII: S2405-8440(24)02516-7
Knihovny.cz E-zdroje
- Klíčová slova
- Agricultural soils, Ammonia-oxidizing microorganisms (AO), Arbuscular mycorrhizal (AM) fungi, Cropland and grassland, Land use, Quantitative real-time PCR (qPCR),
- Publikační typ
- časopisecké články MeSH
Arbuscular mycorrhizal (AM) fungi are supposedly competing with ammonia-oxidizing microorganisms (AO) for soil nitrogen in form of ammonium. Despite a few studies directly addressing AM fungal and AO interactions, mostly in artificial cultivation substrates, it is not yet clear whether AM fungi can effectively suppress AO in field soils containing complex indigenous microbiomes. To fill this knowledge gap, we conducted compartmentalized pot experiments using four pairs of cropland and grassland soils with varying physicochemical properties. To exclude the interference of roots, a fine nylon mesh was used to separate the rhizosphere and mesh bags, with the latter being filled with unsterile field soils. Inoculation of plants with AM fungus Rhizophagus irregularis LPA9 suppressed AO bacteria (AOB) but not archaea (AOA) in the soils, indicating how soil nitrification could be suppressed by AM fungal presence/activity. In addition, in rhizosphere filled with artificial substrate, AM inoculation did suppress both AOB and AOA, implying more complex interactions between roots, AO, and AM fungi. Besides, we also observed that indigenous AM fungi contained in the field soils eventually did colonize the roots of plants behind the root barrier, and that the extent of such colonization was higher if the soil has previously been taken from cropland than from grassland. Despite this, the effect of experimental AM fungal inoculation on suppression of indigenous AOB in the unsterile field soils did not vanish. It seems that studying processes at a finer temporal scale, using larger buffer zones between rhizosphere and mesh bags, and/or detailed characterization of indigenous AM fungal and AO communities would be needed to uncover further details of the biotic interactions between the AM fungi and indigenous soil AO.
Zobrazit více v PubMed
Frink C.R., Waggoner P.E., Ausubel J.H. Nitrogen fertilizer: retrospect and prospect. Proc. Natl. Acad. Sci. U.S.A. 1999;96:1175–1180. doi: 10.1073/pnas.96.4.1175. PubMed DOI PMC
Melillo E.D. The first green revolution: debt peonage and the making of the nitrogen fertilizer trade, 1840–1930. Am. Hist. Rev. 2012;117:1028–1060. doi: 10.1093/ahr/117.4.1028. DOI
Davidson E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2009;29(2):659–662. doi: 10.1038/ngeo608. DOI
Canfield D.E., Glazer A.N., Falkowski P.G. The evolution and future of earth's nitrogen cycle. Science. 2010;330:192–196. doi: 10.1126/science.1186120. PubMed DOI
Smith S.E., Read D.J. third ed. Academic Press; San Diego, Acad. Press San Diego, and London: 2008. Mycorrhizal Symbiosis.
Brundrett M.C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77. doi: 10.1007/s11104-008-9877-9. DOI
Brundrett M.C., Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220:1108–1115. doi: 10.1111/nph.14976. PubMed DOI
Cavagnaro T.R., Bender S.F., Asghari H.R., van der Heijden M.G.A. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015;20:283–290. doi: 10.1016/j.tplants.2015.03.004. PubMed DOI
Zheng X., Liu Q., Chen X., Cao M., Wu F., Li W., Zhang L., Liu S., Jiang J. Arbuscular mycorrhizal fungi decrease soil ammonium availability and nitrous oxide emissions under nitrogen input. Agric. For. Meteorol. 2023;333 doi: 10.1016/j.agrformet.2023.109385. DOI
Gui H., Gao Y., Wang Z., Shi L., Yan K., Xu J. Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. Sci. Total Environ. 2021;774 doi: 10.1016/j.scitotenv.2021.145133. PubMed DOI
He Y., Li B., Yan K., Yang R., Lei G., Li M., Li Y., Zhan F. Arbuscular mycorrhizal fungus-induced decrease in nitrogen concentration in pore water and nitrogen leaching loss from red soil under simulated heavy rainfall. Environ. Sci. Pollut. Res. 2021;28:17457–17467. doi: 10.1007/s11356-020-12131-x. PubMed DOI
Storer K., Coggan A., Ineson P., Hodge A. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol. 2018;220:1285–1295. doi: 10.1111/nph.14931. PubMed DOI PMC
Shen Y., Zhu B. Arbuscular mycorrhizal fungi reduce soil nitrous oxide emission. Geoderma. 2021;402 doi: 10.1016/j.geoderma.2021.115179. DOI
Ollivier J., Töwe S., Bannert A., Hai B., Kastl E.M., Meyer A., Su M.X., Kleineidam K., Schloter M. Nitrogen turnover in soil and global change. FEMS Microbiol. Ecol. 2011;78:3–16. doi: 10.1111/j.1574-6941.2011.01165.x. PubMed DOI
Rotthauwe J.H., Witzel K.P., Liesack W. The ammonia monooxygenase structural gene amoa as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997;63:4704–4712. doi: 10.1128/aem.63.12.4704-4712.1997. PubMed DOI PMC
Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G.W., Prosser J.I., Schuster S.C., Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–809. doi: 10.1038/nature04983. PubMed DOI
Prosser J.I., Nicol G.W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–531. doi: 10.1016/j.tim.2012.08.001. PubMed DOI
Spang A., Poehlein A., Offre P., Zumbrägel S., Haider S., Rychlik N., Nowka B., Schmeisser C., Lebedeva E.V., Rattei T., Böhm C., Schmid M., Galushko A., Hatzenpichler R., Weinmaier T., Daniel R., Schleper C., Spieck E., Streit W., Wagner M. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ. Microbiol. 2012;14:3122–3145. doi: 10.1111/j.1462-2920.2012.02893.x. PubMed DOI
Klimczyk M., Siczek A., Schimmelpfennig L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ. 2021;771 doi: 10.1016/j.scitotenv.2021.145483. PubMed DOI
Cameron K.C., Di H.J., Moir J.L. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 2013;162:145–173. doi: 10.1111/aab.12014. DOI
Domeignoz-Horta L.A., Philippot L., Peyrard C., Bru D., Breuil M.-C., Bizouard F., Justes E., Mary B., Léonard J., Spor A. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils. Global Change Biol. 2018;24:360–370. doi: 10.1111/gcb.13853. PubMed DOI
Kiers E.T., Duhamel M., Beesetty Y., Mensah J.A., Franken O., Verbruggen E., Fellbaum C.R., Kowalchuk G.A., Hart M.M., Bago A., Palmer T.M., West S.A., Vandenkoornhuyse P., Jansa J., Bücking H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–882. doi: 10.1126/science.1208473. PubMed DOI
Fellbaum C.R., Mensah J.A., Cloos A.J., Strahan G.E., Pfeffer P.E., Kiers E.T., Bücking H. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 2014;203:646–656. doi: 10.1111/nph.12827. PubMed DOI
Cusant L. Univ. Paul Sabatier-Toulouse III; 2019. The Genetic Toolbox of Arbuscular Mycorrhizal Fungi for Carbon Trading with Their Host Plants.https://theses.hal.science/tel-03716208 PhD Diss. (accessed April 26, 2023)
Bukovská P., Gryndler M., Gryndlerová H., Püschel D., Jansa J. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front. Microbiol. 2016;7:711. doi: 10.3389/fmicb.2016.00711. PubMed DOI PMC
Teutscherova N., Vazquez E., Arango J., Arevalo A., Benito M., Pulleman M. Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application. Geoderma. 2019;338:493–501. doi: 10.1016/j.geoderma.2018.09.023. DOI
Wattenburger C.J., Gutknecht J., Zhang Q., Brutnell T., Hofmockel K., Halverson L. The rhizosphere and cropping system, but not arbuscular mycorrhizae, affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils. Appl. Soil Ecol. 2020;151 doi: 10.1016/j.apsoil.2020.103540. DOI
Sun D., Kotianová M., Rozmoš M., Hršelová H., Bukovská P., Jansa J. Arbuscular mycorrhizal hyphae selectively suppress soil ammonia oxidizers – but probably not by production of biological nitrification inhibitors. Plant Soil. 2023:1–17. doi: 10.1007/s11104-023-06144-x. DOI
Veresoglou S.D., Verbruggen E., Makarova O., Mansour I., Sen R., Rillig M.C. Arbuscular Mycorrhizal fungi alter the community structure of ammonia oxidizers at high fertility via competition for soil NH4+ Microb. Ecol. 2019;78:147–158. doi: 10.1007/s00248-018-1281-2. PubMed DOI
Dudáš M., Pjevac P., Kotianová M., Gančarčíková K., Rozmoš M., Hršelová H., Bukovská P., Jansa J. Arbuscular mycorrhiza and nitrification: disentangling processes and players by using synthetic nitrification inhibitors. Appl. Environ. Microbiol. 2022;88 doi: 10.1128/aem.01369-22. PubMed DOI PMC
Verbruggen E., Van Der Heijden M.G., Weedon J.T., Kowalchuk G.A., Roling W.F.M. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol. Ecol. 2012;21:2341–2353. doi: 10.1111/j.1365-294X.2012.05534.x. PubMed DOI
Fowler D., Coyle M., Skiba U., Sutton M.A., Cape J.N., Reis S., Sheppard L.J., Jenkins A., Grizzetti B., Galloway J.N., Vitousek P., Leach A., Bouwman A.F., Butterbach-Bahl K., Dentener F., Stevenson D., Amann M., Voss M. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013;368 doi: 10.1098/rstb.2013.0164. PubMed DOI PMC
Oehl F., Laczko E., Bogenrieder A., Stahr K., Bösch R., van der Heijden M., Sieverding E. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 2010;42:724–738. doi: 10.1016/j.soilbio.2010.01.006. DOI
Jansa J., Erb A., Oberholzer H.R., Šmilauer P., Egli S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 2014;23:2118–2135. doi: 10.1111/mec.12706. PubMed DOI
Emmett B.D., Lévesque-Tremblay V., Harrison M.J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 2021;15:2276–2288. doi: 10.1038/s41396-021-00920-2. PubMed DOI PMC
Bukovská P., Bonkowski M., Konvalinková T., Beskid O., Hujslová M., Püschel D., Řezáčová V., Gutiérrez-Núñez M.S., Gryndler M., Jansa J. Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? Mycorrhiza. 2018;28:269–283. doi: 10.1007/s00572-018-0825-0. PubMed DOI
Řezáčová V., Gryndler M., Bukovská P., Šmilauer P., Jansa J. Molecular community analysis of arbuscular mycorrhizal fungi—contributions of pcr primer and host plant selectivity to the detected community profiles. Pedobiologia. 2016 doi: 10.1016/j.pedobi.2016.04.002. DOI
Rozmoš M., Bukovská P., Hršelová H., U M.K.-T.I. Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. Nat. Commun. 2022;16:676–685. doi: 10.1038/s41396-021-01112-8. PubMed DOI PMC
Mcgonigle T.P., Miller M.H., Evans D.G., Fairchild G.L., Swan J.A. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol. 1990;115:495–501. doi: 10.1111/j.1469-8137.1990.tb00476.x. PubMed DOI
Ohno T., Zibilske L.M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 1991;55:892–895. doi: 10.2136/sssaJ1991.03615995005500030046x. DOI
Thonar C., Erb A., Jansa J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Resour. 2012;12:219–232. doi: 10.1111/j.1755-0998.2011.03086.x. PubMed DOI
Kokkoris V., Hamel C., Hart M.M. Mycorrhizal response in crop versus wild plants. PLoS One. 2019;14 doi: 10.1371/journal.pone.0221037. PubMed DOI PMC
Sattari S.Z., Bouwman A.F., Giller K.E., Van Ittersum M.K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl. Acad. Sci. U.S.A. 2012;109:6348–6353. doi: 10.1073/pnas.1113675109. PubMed DOI PMC
Veresoglou S.D., Chen B., Rillig M.C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 2012;46:53–62. doi: 10.1016/j.soilbio.2011.11.018. DOI
Wen Z., White P.J., Shen J., Lambers H. Linking root exudation to belowground economic traits for resource acquisition. New Phytol. 2022;233:1620–1635. doi: 10.1111/nph.17854. PubMed DOI
Subbarao G.V., Nakahara K., Hurtado M.P., Ono H., Moreta D.E., Salcedo A.F., Yoshihashi A.T., Ishikawa T., Ishitani M., Ohnishi-Kameyama M., Yoshida M., Rondon M., Rao I.M., Lascano C.E., Berry W.L., Ito O. Evidence for biological nitrification inhibition in Brachiaria pastures. Proc. Natl. Acad. Sci. U. S. A. 2009;106:17302–17307. doi: 10.1073/pnas.0903694106. PubMed DOI PMC
Byrnes R.C., Nùñez J., Arenas L., Rao I., Trujillo C., Alvarez C., Arango J., Rasche F., Chirinda N. Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Soil Biol. Biochem. 2017;107:156–163. doi: 10.1016/j.soilbio.2016.12.029. DOI
Banning N.C., Maccarone L.D., Fisk L.M., V Murphy D. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil OPEN. Sci. Rep. 2015 doi: 10.1038/srep11146. PubMed DOI PMC
Hu L., Dong Z., Wang Z., Xiao L., Zhu B. The contributions of ammonia oxidizing bacteria and archaea to nitrification-dependent N2O emission in alkaline and neutral purple soils. Sci. Rep. 2022;12:1–11. doi: 10.1038/s41598-022-23084-1. PubMed DOI PMC
Xiang X., He D., He J.S., Myrold D.D., Chu H. Ammonia-oxidizing bacteria rather than archaea respond to short-term urea amendment in an alpine grassland. Soil Biol. Biochem. 2017;107:218–225. doi: 10.1016/j.soilbio.2017.01.012. DOI
Veresoglou S.D., Sen R., Mamolos A.P., Veresoglou D.S. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. J. Ecol. 2011;99:1339–1349. doi: 10.1111/J.1365-2745.2011.01863.x. DOI
Faghihinia M., Jansa J., Halverson L.J., Staddon P.L. Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. Biol. Fertil. Soils. 2022;591(59):17–34. doi: 10.1007/s00374-022-01683-4. DOI
Nuccio E.E., Blazewicz S.J., Lafler M., Campbell A.N., Kakouridis A., Kimbrel J.A., Wollard J., Vyshenska D., Riley R., Tomatsu A., Hestrin R., Malmstrom R.R., Firestone M., Pett-Ridge J. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. Microbiome. 2022;10:1–20. doi: 10.1186/s40168-022-01391-z. PubMed DOI PMC