Arbuscular mycorrhizal fungi suppress ammonia-oxidizing bacteria but not archaea across agricultural soils

. 2024 Feb 29 ; 10 (4) : e26485. [epub] 20240220

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38444950
Odkazy

PubMed 38444950
PubMed Central PMC10912043
DOI 10.1016/j.heliyon.2024.e26485
PII: S2405-8440(24)02516-7
Knihovny.cz E-zdroje

Arbuscular mycorrhizal (AM) fungi are supposedly competing with ammonia-oxidizing microorganisms (AO) for soil nitrogen in form of ammonium. Despite a few studies directly addressing AM fungal and AO interactions, mostly in artificial cultivation substrates, it is not yet clear whether AM fungi can effectively suppress AO in field soils containing complex indigenous microbiomes. To fill this knowledge gap, we conducted compartmentalized pot experiments using four pairs of cropland and grassland soils with varying physicochemical properties. To exclude the interference of roots, a fine nylon mesh was used to separate the rhizosphere and mesh bags, with the latter being filled with unsterile field soils. Inoculation of plants with AM fungus Rhizophagus irregularis LPA9 suppressed AO bacteria (AOB) but not archaea (AOA) in the soils, indicating how soil nitrification could be suppressed by AM fungal presence/activity. In addition, in rhizosphere filled with artificial substrate, AM inoculation did suppress both AOB and AOA, implying more complex interactions between roots, AO, and AM fungi. Besides, we also observed that indigenous AM fungi contained in the field soils eventually did colonize the roots of plants behind the root barrier, and that the extent of such colonization was higher if the soil has previously been taken from cropland than from grassland. Despite this, the effect of experimental AM fungal inoculation on suppression of indigenous AOB in the unsterile field soils did not vanish. It seems that studying processes at a finer temporal scale, using larger buffer zones between rhizosphere and mesh bags, and/or detailed characterization of indigenous AM fungal and AO communities would be needed to uncover further details of the biotic interactions between the AM fungi and indigenous soil AO.

Zobrazit více v PubMed

Frink C.R., Waggoner P.E., Ausubel J.H. Nitrogen fertilizer: retrospect and prospect. Proc. Natl. Acad. Sci. U.S.A. 1999;96:1175–1180. doi: 10.1073/pnas.96.4.1175. PubMed DOI PMC

Melillo E.D. The first green revolution: debt peonage and the making of the nitrogen fertilizer trade, 1840–1930. Am. Hist. Rev. 2012;117:1028–1060. doi: 10.1093/ahr/117.4.1028. DOI

Davidson E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2009;29(2):659–662. doi: 10.1038/ngeo608. DOI

Canfield D.E., Glazer A.N., Falkowski P.G. The evolution and future of earth's nitrogen cycle. Science. 2010;330:192–196. doi: 10.1126/science.1186120. PubMed DOI

Smith S.E., Read D.J. third ed. Academic Press; San Diego, Acad. Press San Diego, and London: 2008. Mycorrhizal Symbiosis.

Brundrett M.C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77. doi: 10.1007/s11104-008-9877-9. DOI

Brundrett M.C., Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220:1108–1115. doi: 10.1111/nph.14976. PubMed DOI

Cavagnaro T.R., Bender S.F., Asghari H.R., van der Heijden M.G.A. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015;20:283–290. doi: 10.1016/j.tplants.2015.03.004. PubMed DOI

Zheng X., Liu Q., Chen X., Cao M., Wu F., Li W., Zhang L., Liu S., Jiang J. Arbuscular mycorrhizal fungi decrease soil ammonium availability and nitrous oxide emissions under nitrogen input. Agric. For. Meteorol. 2023;333 doi: 10.1016/j.agrformet.2023.109385. DOI

Gui H., Gao Y., Wang Z., Shi L., Yan K., Xu J. Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. Sci. Total Environ. 2021;774 doi: 10.1016/j.scitotenv.2021.145133. PubMed DOI

He Y., Li B., Yan K., Yang R., Lei G., Li M., Li Y., Zhan F. Arbuscular mycorrhizal fungus-induced decrease in nitrogen concentration in pore water and nitrogen leaching loss from red soil under simulated heavy rainfall. Environ. Sci. Pollut. Res. 2021;28:17457–17467. doi: 10.1007/s11356-020-12131-x. PubMed DOI

Storer K., Coggan A., Ineson P., Hodge A. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol. 2018;220:1285–1295. doi: 10.1111/nph.14931. PubMed DOI PMC

Shen Y., Zhu B. Arbuscular mycorrhizal fungi reduce soil nitrous oxide emission. Geoderma. 2021;402 doi: 10.1016/j.geoderma.2021.115179. DOI

Ollivier J., Töwe S., Bannert A., Hai B., Kastl E.M., Meyer A., Su M.X., Kleineidam K., Schloter M. Nitrogen turnover in soil and global change. FEMS Microbiol. Ecol. 2011;78:3–16. doi: 10.1111/j.1574-6941.2011.01165.x. PubMed DOI

Rotthauwe J.H., Witzel K.P., Liesack W. The ammonia monooxygenase structural gene amoa as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997;63:4704–4712. doi: 10.1128/aem.63.12.4704-4712.1997. PubMed DOI PMC

Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G.W., Prosser J.I., Schuster S.C., Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–809. doi: 10.1038/nature04983. PubMed DOI

Prosser J.I., Nicol G.W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–531. doi: 10.1016/j.tim.2012.08.001. PubMed DOI

Spang A., Poehlein A., Offre P., Zumbrägel S., Haider S., Rychlik N., Nowka B., Schmeisser C., Lebedeva E.V., Rattei T., Böhm C., Schmid M., Galushko A., Hatzenpichler R., Weinmaier T., Daniel R., Schleper C., Spieck E., Streit W., Wagner M. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ. Microbiol. 2012;14:3122–3145. doi: 10.1111/j.1462-2920.2012.02893.x. PubMed DOI

Klimczyk M., Siczek A., Schimmelpfennig L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ. 2021;771 doi: 10.1016/j.scitotenv.2021.145483. PubMed DOI

Cameron K.C., Di H.J., Moir J.L. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 2013;162:145–173. doi: 10.1111/aab.12014. DOI

Domeignoz-Horta L.A., Philippot L., Peyrard C., Bru D., Breuil M.-C., Bizouard F., Justes E., Mary B., Léonard J., Spor A. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils. Global Change Biol. 2018;24:360–370. doi: 10.1111/gcb.13853. PubMed DOI

Kiers E.T., Duhamel M., Beesetty Y., Mensah J.A., Franken O., Verbruggen E., Fellbaum C.R., Kowalchuk G.A., Hart M.M., Bago A., Palmer T.M., West S.A., Vandenkoornhuyse P., Jansa J., Bücking H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–882. doi: 10.1126/science.1208473. PubMed DOI

Fellbaum C.R., Mensah J.A., Cloos A.J., Strahan G.E., Pfeffer P.E., Kiers E.T., Bücking H. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 2014;203:646–656. doi: 10.1111/nph.12827. PubMed DOI

Cusant L. Univ. Paul Sabatier-Toulouse III; 2019. The Genetic Toolbox of Arbuscular Mycorrhizal Fungi for Carbon Trading with Their Host Plants.https://theses.hal.science/tel-03716208 PhD Diss. (accessed April 26, 2023)

Bukovská P., Gryndler M., Gryndlerová H., Püschel D., Jansa J. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front. Microbiol. 2016;7:711. doi: 10.3389/fmicb.2016.00711. PubMed DOI PMC

Teutscherova N., Vazquez E., Arango J., Arevalo A., Benito M., Pulleman M. Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application. Geoderma. 2019;338:493–501. doi: 10.1016/j.geoderma.2018.09.023. DOI

Wattenburger C.J., Gutknecht J., Zhang Q., Brutnell T., Hofmockel K., Halverson L. The rhizosphere and cropping system, but not arbuscular mycorrhizae, affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils. Appl. Soil Ecol. 2020;151 doi: 10.1016/j.apsoil.2020.103540. DOI

Sun D., Kotianová M., Rozmoš M., Hršelová H., Bukovská P., Jansa J. Arbuscular mycorrhizal hyphae selectively suppress soil ammonia oxidizers – but probably not by production of biological nitrification inhibitors. Plant Soil. 2023:1–17. doi: 10.1007/s11104-023-06144-x. DOI

Veresoglou S.D., Verbruggen E., Makarova O., Mansour I., Sen R., Rillig M.C. Arbuscular Mycorrhizal fungi alter the community structure of ammonia oxidizers at high fertility via competition for soil NH4+ Microb. Ecol. 2019;78:147–158. doi: 10.1007/s00248-018-1281-2. PubMed DOI

Dudáš M., Pjevac P., Kotianová M., Gančarčíková K., Rozmoš M., Hršelová H., Bukovská P., Jansa J. Arbuscular mycorrhiza and nitrification: disentangling processes and players by using synthetic nitrification inhibitors. Appl. Environ. Microbiol. 2022;88 doi: 10.1128/aem.01369-22. PubMed DOI PMC

Verbruggen E., Van Der Heijden M.G., Weedon J.T., Kowalchuk G.A., Roling W.F.M. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol. Ecol. 2012;21:2341–2353. doi: 10.1111/j.1365-294X.2012.05534.x. PubMed DOI

Fowler D., Coyle M., Skiba U., Sutton M.A., Cape J.N., Reis S., Sheppard L.J., Jenkins A., Grizzetti B., Galloway J.N., Vitousek P., Leach A., Bouwman A.F., Butterbach-Bahl K., Dentener F., Stevenson D., Amann M., Voss M. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013;368 doi: 10.1098/rstb.2013.0164. PubMed DOI PMC

Oehl F., Laczko E., Bogenrieder A., Stahr K., Bösch R., van der Heijden M., Sieverding E. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 2010;42:724–738. doi: 10.1016/j.soilbio.2010.01.006. DOI

Jansa J., Erb A., Oberholzer H.R., Šmilauer P., Egli S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 2014;23:2118–2135. doi: 10.1111/mec.12706. PubMed DOI

Emmett B.D., Lévesque-Tremblay V., Harrison M.J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 2021;15:2276–2288. doi: 10.1038/s41396-021-00920-2. PubMed DOI PMC

Bukovská P., Bonkowski M., Konvalinková T., Beskid O., Hujslová M., Püschel D., Řezáčová V., Gutiérrez-Núñez M.S., Gryndler M., Jansa J. Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? Mycorrhiza. 2018;28:269–283. doi: 10.1007/s00572-018-0825-0. PubMed DOI

Řezáčová V., Gryndler M., Bukovská P., Šmilauer P., Jansa J. Molecular community analysis of arbuscular mycorrhizal fungi—contributions of pcr primer and host plant selectivity to the detected community profiles. Pedobiologia. 2016 doi: 10.1016/j.pedobi.2016.04.002. DOI

Rozmoš M., Bukovská P., Hršelová H., U M.K.-T.I. Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. Nat. Commun. 2022;16:676–685. doi: 10.1038/s41396-021-01112-8. PubMed DOI PMC

Mcgonigle T.P., Miller M.H., Evans D.G., Fairchild G.L., Swan J.A. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol. 1990;115:495–501. doi: 10.1111/j.1469-8137.1990.tb00476.x. PubMed DOI

Ohno T., Zibilske L.M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 1991;55:892–895. doi: 10.2136/sssaJ1991.03615995005500030046x. DOI

Thonar C., Erb A., Jansa J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Resour. 2012;12:219–232. doi: 10.1111/j.1755-0998.2011.03086.x. PubMed DOI

Kokkoris V., Hamel C., Hart M.M. Mycorrhizal response in crop versus wild plants. PLoS One. 2019;14 doi: 10.1371/journal.pone.0221037. PubMed DOI PMC

Sattari S.Z., Bouwman A.F., Giller K.E., Van Ittersum M.K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl. Acad. Sci. U.S.A. 2012;109:6348–6353. doi: 10.1073/pnas.1113675109. PubMed DOI PMC

Veresoglou S.D., Chen B., Rillig M.C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 2012;46:53–62. doi: 10.1016/j.soilbio.2011.11.018. DOI

Wen Z., White P.J., Shen J., Lambers H. Linking root exudation to belowground economic traits for resource acquisition. New Phytol. 2022;233:1620–1635. doi: 10.1111/nph.17854. PubMed DOI

Subbarao G.V., Nakahara K., Hurtado M.P., Ono H., Moreta D.E., Salcedo A.F., Yoshihashi A.T., Ishikawa T., Ishitani M., Ohnishi-Kameyama M., Yoshida M., Rondon M., Rao I.M., Lascano C.E., Berry W.L., Ito O. Evidence for biological nitrification inhibition in Brachiaria pastures. Proc. Natl. Acad. Sci. U. S. A. 2009;106:17302–17307. doi: 10.1073/pnas.0903694106. PubMed DOI PMC

Byrnes R.C., Nùñez J., Arenas L., Rao I., Trujillo C., Alvarez C., Arango J., Rasche F., Chirinda N. Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Soil Biol. Biochem. 2017;107:156–163. doi: 10.1016/j.soilbio.2016.12.029. DOI

Banning N.C., Maccarone L.D., Fisk L.M., V Murphy D. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil OPEN. Sci. Rep. 2015 doi: 10.1038/srep11146. PubMed DOI PMC

Hu L., Dong Z., Wang Z., Xiao L., Zhu B. The contributions of ammonia oxidizing bacteria and archaea to nitrification-dependent N2O emission in alkaline and neutral purple soils. Sci. Rep. 2022;12:1–11. doi: 10.1038/s41598-022-23084-1. PubMed DOI PMC

Xiang X., He D., He J.S., Myrold D.D., Chu H. Ammonia-oxidizing bacteria rather than archaea respond to short-term urea amendment in an alpine grassland. Soil Biol. Biochem. 2017;107:218–225. doi: 10.1016/j.soilbio.2017.01.012. DOI

Veresoglou S.D., Sen R., Mamolos A.P., Veresoglou D.S. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. J. Ecol. 2011;99:1339–1349. doi: 10.1111/J.1365-2745.2011.01863.x. DOI

Faghihinia M., Jansa J., Halverson L.J., Staddon P.L. Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. Biol. Fertil. Soils. 2022;591(59):17–34. doi: 10.1007/s00374-022-01683-4. DOI

Nuccio E.E., Blazewicz S.J., Lafler M., Campbell A.N., Kakouridis A., Kimbrel J.A., Wollard J., Vyshenska D., Riley R., Tomatsu A., Hestrin R., Malmstrom R.R., Firestone M., Pett-Ridge J. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. Microbiome. 2022;10:1–20. doi: 10.1186/s40168-022-01391-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...