Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers?

. 2018 Apr ; 28 (3) : 269-283. [epub] 20180217

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29455336
Odkazy

PubMed 29455336
DOI 10.1007/s00572-018-0825-0
PII: 10.1007/s00572-018-0825-0
Knihovny.cz E-zdroje

Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct 15N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass. The AM fungal hyphae colonized patches supplemented with organic N sources significantly more than those receiving only mineral nutrients, organic carbon in form of cellulose, or nothing. Mycorrhizal plants grew 6.4-fold larger and accumulated, on average, 20.3-fold more 15N originating from the labeled organic sources than their nonmycorrhizal counterparts. Whereas the abundance of microbes (bacteria, fungi, or Acanthamoeba sp.) in the different patches was primarily driven by patch quality, we noted a consistent suppression of the microbial abundances by the presence of AM fungal hyphae. This suppression was particularly strong for ammonia oxidizing bacteria. Our results indicate that AM fungi successfully competed with the other microbes for free ammonium ions and suggest an important role for the notoriously understudied soil protists to play in recycling organic N from soil to plants via AM fungal hyphae.

Zobrazit více v PubMed

Science. 2012 Aug 31;337(6098):1084-7 PubMed

FEMS Microbiol Ecol. 2011 Jun;76(3):428-38 PubMed

ISME J. 2015 Oct;9(10 ):2178-90 PubMed

FEMS Microbiol Ecol. 2013 Aug;85(2):241-50 PubMed

Adv Appl Microbiol. 2014;89:47-99 PubMed

PLoS One. 2015 Jul 28;10(7):e0134039 PubMed

Mycologia. 2016 Sep;108(5):1028-1046 PubMed

New Phytol. 2013 Jul;199(1):203-11 PubMed

Front Microbiol. 2016 May 12;7:711 PubMed

New Phytol. 2015 Mar;205(4):1443-7 PubMed

Appl Environ Microbiol. 1997 Apr;63(4):1489-97 PubMed

Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22 PubMed

New Phytol. 2009;181(1):199-207 PubMed

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10938-42 PubMed

Front Microbiol. 2016 Sep 26;7:1524 PubMed

J Exp Bot. 2003 Oct;54(391):2331-42 PubMed

Nature. 2005 Jun 9;435(7043):819-23 PubMed

Front Plant Sci. 2013 May 16;4:134 PubMed

Trends Plant Sci. 2016 Nov;21(11):937-950 PubMed

Mycorrhiza. 2013 Jul;23(5):341-8 PubMed

New Phytol. 2012 Feb;193(3):755-69 PubMed

New Phytol. 2015 Mar;205(4):1537-51 PubMed

Plant Cell Environ. 2016 Aug;39(8):1683-90 PubMed

Sci Rep. 2016 Jan 11;6:19068 PubMed

Oecologia. 1996 Apr;106(1):111-126 PubMed

Plant Physiol. 2007 Jun;144(2):782-92 PubMed

Front Plant Sci. 2017 Mar 27;8:390 PubMed

Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13754-9 PubMed

Can J Microbiol. 2005 Sep;51(9):791-9 PubMed

Appl Environ Microbiol. 2005 Jul;71(7):4117-20 PubMed

Nature. 1971 Sep 10;233(5315):133 PubMed

FEMS Microbiol Ecol. 2012 Apr;80(1):236-47 PubMed

Microb Ecol. 2007 Nov;54(4):618-26 PubMed

Mol Ecol. 1993 Apr;2(2):113-8 PubMed

Ecol Evol. 2016 May 30;6(13):4332-46 PubMed

Environ Microbiol. 2013 Jun;15(6):1870-81 PubMed

Mol Ecol Resour. 2012 Mar;12(2):219-32 PubMed

Nature. 2001 Sep 20;413(6853):297-9 PubMed

ISME J. 2009 Jun;3(6):675-84 PubMed

Mycorrhiza. 2017 Jan;27(1):35-51 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes

. 2024 Jul ; 34 (4) : 303-316. [epub] 20240603

Arbuscular mycorrhizal fungi suppress ammonia-oxidizing bacteria but not archaea across agricultural soils

. 2024 Feb 29 ; 10 (4) : e26485. [epub] 20240220

Arbuscular Mycorrhiza and Nitrification: Disentangling Processes and Players by Using Synthetic Nitrification Inhibitors

. 2022 Oct 26 ; 88 (20) : e0136922. [epub] 20221003

Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin

. 2021 ; 12 () : 574060. [epub] 20210219

Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth

. 2020 Jan ; 30 (1) : 63-77. [epub] 20200215

Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula

. 2019 ; 14 (11) : e0224938. [epub] 20191111

Soil Matrix Determines the Outcome of Interaction Between Mycorrhizal Symbiosis and Biochar for Andropogon gerardii Growth and Nutrition

. 2018 ; 9 () : 2862. [epub] 20181127

Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes

. 2018 ; 9 () : 449. [epub] 20180406

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace