Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers?
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29455336
DOI
10.1007/s00572-018-0825-0
PII: 10.1007/s00572-018-0825-0
Knihovny.cz E-zdroje
- Klíčová slova
- 15N–labeling, Metatranscriptomics, Organic nitrogen (N), Quantitative real-time PCR (qPCR), Root-free compartments, Soil microbial loop,
- MeSH
- Acanthamoeba metabolismus MeSH
- amoniak metabolismus MeSH
- Andropogon růst a vývoj metabolismus mikrobiologie MeSH
- Bacteria metabolismus MeSH
- dusík metabolismus MeSH
- hyfy metabolismus MeSH
- mykorhiza metabolismus MeSH
- organické látky metabolismus MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amoniak MeSH
- dusík MeSH
- organické látky MeSH
Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct 15N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass. The AM fungal hyphae colonized patches supplemented with organic N sources significantly more than those receiving only mineral nutrients, organic carbon in form of cellulose, or nothing. Mycorrhizal plants grew 6.4-fold larger and accumulated, on average, 20.3-fold more 15N originating from the labeled organic sources than their nonmycorrhizal counterparts. Whereas the abundance of microbes (bacteria, fungi, or Acanthamoeba sp.) in the different patches was primarily driven by patch quality, we noted a consistent suppression of the microbial abundances by the presence of AM fungal hyphae. This suppression was particularly strong for ammonia oxidizing bacteria. Our results indicate that AM fungi successfully competed with the other microbes for free ammonium ions and suggest an important role for the notoriously understudied soil protists to play in recycling organic N from soil to plants via AM fungal hyphae.
Cologne Biocenter University of Cologne Zülpicher Strasse 47b 50674 Köln Germany
Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 14220 Praha 4 Czech Republic
Zobrazit více v PubMed
Science. 2012 Aug 31;337(6098):1084-7 PubMed
FEMS Microbiol Ecol. 2011 Jun;76(3):428-38 PubMed
ISME J. 2015 Oct;9(10 ):2178-90 PubMed
FEMS Microbiol Ecol. 2013 Aug;85(2):241-50 PubMed
Adv Appl Microbiol. 2014;89:47-99 PubMed
PLoS One. 2015 Jul 28;10(7):e0134039 PubMed
Mycologia. 2016 Sep;108(5):1028-1046 PubMed
New Phytol. 2013 Jul;199(1):203-11 PubMed
Front Microbiol. 2016 May 12;7:711 PubMed
New Phytol. 2015 Mar;205(4):1443-7 PubMed
Appl Environ Microbiol. 1997 Apr;63(4):1489-97 PubMed
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22 PubMed
New Phytol. 2009;181(1):199-207 PubMed
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10938-42 PubMed
Front Microbiol. 2016 Sep 26;7:1524 PubMed
J Exp Bot. 2003 Oct;54(391):2331-42 PubMed
Nature. 2005 Jun 9;435(7043):819-23 PubMed
Front Plant Sci. 2013 May 16;4:134 PubMed
Trends Plant Sci. 2016 Nov;21(11):937-950 PubMed
Mycorrhiza. 2013 Jul;23(5):341-8 PubMed
New Phytol. 2012 Feb;193(3):755-69 PubMed
New Phytol. 2015 Mar;205(4):1537-51 PubMed
Plant Cell Environ. 2016 Aug;39(8):1683-90 PubMed
Sci Rep. 2016 Jan 11;6:19068 PubMed
Oecologia. 1996 Apr;106(1):111-126 PubMed
Plant Physiol. 2007 Jun;144(2):782-92 PubMed
Front Plant Sci. 2017 Mar 27;8:390 PubMed
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13754-9 PubMed
Can J Microbiol. 2005 Sep;51(9):791-9 PubMed
Appl Environ Microbiol. 2005 Jul;71(7):4117-20 PubMed
Nature. 1971 Sep 10;233(5315):133 PubMed
FEMS Microbiol Ecol. 2012 Apr;80(1):236-47 PubMed
Microb Ecol. 2007 Nov;54(4):618-26 PubMed
Mol Ecol. 1993 Apr;2(2):113-8 PubMed
Ecol Evol. 2016 May 30;6(13):4332-46 PubMed
Environ Microbiol. 2013 Jun;15(6):1870-81 PubMed
Mol Ecol Resour. 2012 Mar;12(2):219-32 PubMed
Nature. 2001 Sep 20;413(6853):297-9 PubMed
ISME J. 2009 Jun;3(6):675-84 PubMed
Mycorrhiza. 2017 Jan;27(1):35-51 PubMed
Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes
Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin
Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth