Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts - or just soil free-riders?
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
23720665
PubMed Central
PMC3655320
DOI
10.3389/fpls.2013.00134
Knihovny.cz E-resources
- Keywords
- carbon, hypersymbionts, hyphae-associated microbes, mineral nutrients, mycorrhizal symbiosis, soil resources, theory,
- Publication type
- Journal Article MeSH
Mycorrhizal fungi interconnect two different kinds of environments, namely the plant roots with the surrounding soil. This widespread coexistence of plants and fungi has important consequences for plant mineral nutrition, water acquisition, carbon allocation, tolerance to abiotic and biotic stresses and interplant competition. Yet some current research indicates a number of important roles to be played by hyphae-associated microbes, in addition to the hyphae themselves, in foraging for and acquisition of soil resources and in transformation of organic carbon in the soil-plant systems. We critically review the available scientific evidence for the theory that the surface of mycorrhizal hyphae in soil is colonized by highly specialized microbial communities, and that these fulfill important functions in the ecology of mycorrhizal fungal hyphae such as accessing recalcitrant forms of mineral nutrients, and production of signaling and other compounds in the vicinity of the hyphae. The validity of another hypothesis will then be addressed, namely that the specific associative microbes are rewarded with exclusive access to fungal carbon, which would qualify them as hypersymbionts (i.e., symbionts of symbiotic mycorrhizal fungi). Thereafter, we ask whether recruitment of functionally different microbial assemblages by the hyphae is required under different soil conditions (questioning what evidence is available for such an effect), and we identify knowledge gaps requiring further attention.
See more in PubMed
Allen M. F. (2007). Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 6 291–297
Alonso L. M., Kleiner D., Ortega E. (2008). Spores of the mycorrhizal fungus Glomus mosseae host yeasts that solubilize phosphate and accumulate polyphosphates. Mycorrhiza 18 197–204 PubMed
Artursson V., Jansson J. K. (2003). Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl. Environ. Microbiol. 69 6208–6215 PubMed PMC
Augé R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil Sci. 84 373–381
Bago B., Azcon-Aguilar C., Goulet A, Piché Y. (1998). Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol. 139 375–388
Bago B., Pfeffer P. E., Douds D. D., Brouillette J., Bécard G., Shachar-Hill Y. (1999). Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol. 121 263–271 PubMed PMC
Barto E. K., Hilker M., Muller F., Mohney B. K., Weidenhamer J. D., Rillig M. C. (2011). The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE 6:e27195 10.1371/journal.pone.0027195 PubMed DOI PMC
Bending G. D., Read D. J. (1997). Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol. Res. 101 1348–1354
Berbee M. L., Taylor J. W. (2007). Rhynie chert: a window into a lost world of complex plant-fungus interactions. New Phytol. 174 475–479 PubMed
Bidondo L. F., Silvani V., Colombo R., Pergola M., Bompadre J., Godeas A. (2011). Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol. Biochem. 43 1866–1872
Boby V. U., Balakrishna A. N., Bagyaraj D. J. (2008). Interaction between Glomus mosseae and soil yeasts on growth and nutrition of cowpea. Microbiol. Res. 163 693–700 PubMed
Bolliger A., Nalla A., Magid J., De Neergaard A., Nalla A. D., Bog-Hansen T. C. (2008). Re-examining the glomalin-purity of glomalin-related soil protein fractions through immunochemical, lectin-affinity and soil labelling experiments. Soil Biol. Biochem. 40 887–893
Bonfante P., Anca I. A. (2009). Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63 363–383 PubMed
Botha A. (2011). The importance and ecology of yeasts in soil. Soil Biol. Biochem. 43 1–8
Cairney J. W. G. (2000). Evolution of mycorrhiza systems. Naturwissenschaften 87 467–475 PubMed
Calderon F. J., Schultz D. J., Paul E. A. (2012). Carbon allocation, belowground transfers, and lipid turnover in a plant-microbial association. Soil Sci. Soc. Am. J. 76 1614–1623
Chefetz B., Chen Y., Hadar Y. (1998). Purification and characterization of laccase from Chaetomium thermophilium and its role in humification. Appl. Environ. Microbiol. 64 3175–3179 PubMed PMC
Cheng L., Booker F. L., Tu C., Burkey K. O., Zhou L. S., Shew H. D., et al. (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337 1084–1087 PubMed
Drew E. A., Murray R. S., Smith S. E., Jakobsen I. (2003). Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil 251 105–114
Drigo B., Kowalchuk G. A., Knapp B. A., Pijl A. S., Boschker H. T. S, Van Veen J. A. (2013). Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob. Change Biol. 19 621–636 PubMed
Drigo B., Pijl A. S., Duyts H., Kielak A., Gamper H. A., Houtekamer M. J., et al. (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. U.S.A. 107 10938–10942 PubMed PMC
Faeth S. H., Fagan W. F. (2002). Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr. Comp. Biol. 42 360–368 PubMed
Fellbaum C. R., Gachomo E. W., Beesetty Y., Choudhari S., Strahan G. D., Pfeffer P. E., et al. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U.S.A. 109 2666–2671 PubMed PMC
Feng G., Song Y. C., Li X. L., Christie P. (2003). Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Appl. Soil Ecol. 22 139–148
Fitter A. H., Garbaye J. (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159 123–132
Frey-Klett P., Garbaye J., Tarkka M. (2007). The mycorrhiza helper bacteria revisited. New Phytol. 176 22–36 PubMed
Freymann B. P., De Visser S. N., Olff H. (2010). Spatial and temporal hotspots of termite-driven decomposition in the Serengeti. Ecography 33 443–450
Gadkar V., Rillig M. C. (2006). The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol. Lett. 263 93–101 PubMed
Garbaye J. (1994). Helper bacteria – a new dimension to the mycorrhizal symbiosis. New Phytol. 128 197–210 PubMed
Gavito M. E., Azcon-Aguilar C. (2012). Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agric. Food Sci. 21 2–11
Ghignone S., Salvioli A., Anca I., Lumini E., Ortu G., Petiti L., et al. (2012). The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J. 6 136–145 PubMed PMC
Gonzalez-Chavez M. D. A., Newsam R., Linderman R., Dodd J., Valdez-Carrasco J. M. (2008). Bacteria associated with the extraradical mycelium of an arbuscular mycorrhizal fungus in an As/Cu polluted soil. Agrociencia 42 1–10
Gryndler M, Hršelová H. (1998). Effect of flavonoids on in-vitro proliferation of hyphae of Glomus fistulosum. Biol. Plant. 41 303–306
Gryndler M., Hršelová H., Chvátalová I., Jansa J. (1998). The effect of selected plant hormones on in vitro proliferation of hyphae of Glomus fistulosum. Biol. Plant. 41 255–263
Gryndler M., Soukupová L., Hršelová H., Gryndlerová H., Borovička J., Streiblová E., et al. (2013). A quest for indigenous truffle-helper prokaryotes. Environ. Microbiol. Rep. 5 346–352 PubMed
Gutknecht J. L. M., Field C. B., Balser T. C. (2012). Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Glob. Change Biol. 18 2256–2269
Hawkes C. V., Kivlin S. N., Rocca J. D., Huguet V., Thomsen M. A., Suttle K. B. (2011). Fungal community responses to precipitation. Glob. Change Biol. 17 1637–1645
Herman D. J., Firestone M. K., Nuccio E., Hodge A. (2012). Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol. Ecol. 80 236–247 PubMed
Hodge A. (2001). Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol. 151 725–734 PubMed
Hodge A. (2003). Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol. 157 303–314 PubMed
Hodge A., Campbell C. D., Fitter A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413 297–299 PubMed
Hodge A., Robinson D., Fitter A. H. (2000). An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. New Phytol. 145 575–584 PubMed
Hoffman M. T., Arnold A. E. (2010). Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl. Environ. Microbiol. 76 4063–4075 PubMed PMC
Hyde K. D., Soytong K. (2008). The fungal endophyte dilemma. Fungal Divers. 33 163–173
Izumi H., Elfstrand M., Fransson P. (2013). Suillus mycelia under elevated atmospheric CO2 support increased bacterial communities and scarce nifH gene activity in contrast to Hebeloma mycelia. Mycorrhiza 23 155–165 PubMed
Jakobsen I. (1983). Vesicular-arbuscular mycorrhiza in field-grown crops.2. Effect of Inoculation on growth and nutrient uptake in barley at2 phosphorus levels in fumigated soil. New Phytol. 94 595–604
Jakobsen I., Abbott L. K., Robson A. D. (1992). External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol. 120 509–516
Jakobsen I., Rosendahl L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115 77–83
Janos D. P., Garamszegi S., Beltran B. (2008). Glomalin extraction and measurement. Soil Biol. Biochem. 40 728–739
Jansa J., Finlay R. D., Wallander H., Smith F. A., Smith S. E. (2011). “Role of mycorrhizal symbioses in phosphorus cycling,” in Phosphorus in Action, eds Bünemann E. K., Oberson A., Frossard E. (Heidelberg: Springer; ) 137–168
Jansa J., Gryndler M. (2010). “Biotic environment of the arbuscular mycorrhizal fungi in soil,” in Arbuscular Mycorrhizas: Physiology and Function, eds Koltai H., Kapulnik Y. (Heidelberg: Springer; ) 209–236
Jansa J., Mozafar A., Frossard E. (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23 481–488
Jeon J. R., Baldrian P., Murugesan K., Chang Y. S. (2012). Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb. Biotechnol. 5 318–332 PubMed PMC
Johnson D., Leake J. R., Ostle N., Ineson P., Read D. J. (2002). In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol. 153 327–334
Johnson N. C., Graham J. H. (2013). The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363 411–419
Johnson N. C., Graham J. H., Smith F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135 575–586
Joner E. J., Jakobsen I. (1995). Uptake of 32P from labeled organic matter by mycorrhizal and nonmycorrhizal subterranean clover (Trifolium subterraneum L). Plant Soil 172 221–227
Joner E. J., Van Aarle I. M, Vosátka M. (2000). Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226 199–210
Jones D. L., Hodge A., Kuzyakov Y. (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163 459–480 PubMed
Kariman K., Barker S. J., Finnegan P. M., Tibbett M. (2012). Dual mycorrhizal associations of jarrah (Eucalyptus marginata) in a nurse-pot system. Aust. J. Bot. 60 661–668
Kataoka R., Taniguchi T., Ooshima H., Futai K. (2008). Comparison of the bacterial communities established on the mycorrhizae formed on Pinus thunbergii root tips by eight species of fungi. Plant Soil 304 267–275
Klironomos J. N., Ursic M. (1998). Density-dependent grazing on the extraradical hyphal network of the arbuscular mycorrhizal fungus, Glomus intraradices, by the collembolan, Folsomia candida. Biol. Fertil. Soils 26 250–253
Koide R. T., Kabir Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 148 511–517 PubMed
Kramer S., Marhan S., Ruess L., Armbruster W., Butenschoen O., Haslwimmer H., et al. (2012). Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems. Pedobiologia 55 111–119
Laheurte F., Leyval C., Berthelin J. (1990). Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9 111–116
Leake J. R., Ostle N. J., Rangel-Castro J. I., Johnson D. (2006). Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Appl. Soil Ecol. 33 152–175
Leigh J., Fitter A. H., Hodge A. (2011). Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. FEMS Microbiol. Ecol. 76 428–438 PubMed
Lendenmann M., Thonar C., Barnard R. L., Salmon Y., Werner R. A., Frossard E., et al. (2011). Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21 689–702 PubMed
Li X. L., Marschner H., George E. (1991). Acquisition of phosphorus and copper by VA mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136 49–57
Logi C., Sbrana C., Giovannetti M. (1998). Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl. Environ. Microbiol. 64 3473–3479 PubMed PMC
Mäder P., Vierheilig H., Streitwolf-Engel R., Boller T., Frey B., Christie P., et al. (2000). Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol. 146 155–161
Martin F., Aerts A., Ahren D., Brun A., Danchin E. G. J., Duchaussoy F., et al. (2008). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452 88–U87 PubMed
Millner P. D., Wright S. F. (2002). Tools for support of ecological research on arbuscular mycorrhizal fungi. Symbiosis 33 101–123
Miransari M. (2011). Arbuscular mycorrhizal fungi and nitrogen uptake. Arch. Microbiol. 193 77–81 PubMed
Mosse B. (1957). Growth and chemical composition of mycorrhizal and non-mycorrhizal apples. Nature 179 923–924
Neuhauser C., Fargione J. E. (2004). A mutualisim-parasitism continuum model and its application to plant-mycorrhizae interactions. Ecol. Modell. 177 337–352
Olsson P. A., Johnson N. C. (2005). Tracking carbon from the atmosphere to the rhizosphere. Ecol. Lett. 8 1264–1270
Paul E. A, Kucey R. M. N. (1981). Carbon flow in plant microbial associations. Science 213 473–474 PubMed
Paul L. R., Chapman B. K., Chanway C. P. (2007). Nitrogen fixation associated with Suillus tomentosus tuberculate ectomycorrhizae on Pinus contorta var. latifolia. Ann. Bot. 99 1101–1109 PubMed PMC
Piccolo A., Cozzolino A., Conte P., Spaccini R. (2000). Polymerization of humic substances by an enzyme-catalyzed oxidative coupling. Naturwissenschaften 87 391–394 PubMed
Read D. J., Duckett J. G., Francis R., Ligrone R., Russell A. (2000). Symbiotic fungal associations in `lower’ land plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355 815–830 PubMed PMC
Read D. J., Leake J. R., Perez-Moreno J. (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can. J. Bot. 82 1243–1263
Redecker D., Kodner R., Graham L. E. (2000). Glomalean fungi from the Ordovician. Science 289 1920–1921 PubMed
Remy W., Taylor T. N., Hass H., Kerp H. (1994). 4-Hundred million year old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. U.S.A. 91 11841–11843 PubMed PMC
Rillig M. C. (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84 355–363
Seipke R. F., Kaltenpoth M., Hutchings M. I. (2012). Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol. Rev. 36 862–876 PubMed
Scherer H. W., Frost M. (2004). Depletion of non-exchangeable NH4+ at the root-soil and hyphae-soil interface of VA mycorrhizal maize (Zea mays) and parsley (Petroselinum sativum). J. Plant Nutr. Soil Sci. 167 713–719
Scheublin T. R., Sanders I. R., Keel C, Van Der Meer J. R. (2010). Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J. 4 752–763 PubMed
Schnepf A., Roose T. (2006). Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytol. 171 669–682 PubMed
üßler A., Schwarzott D., Walker C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105 1413–1421
Schweiger P., Jakobsen I. (2000). Laboratory and field methods for measurement of hyphal uptake of nutrients in soil. Plant Soil 226 237–244
Simon L., Bousquet J., Levesque R. C., Lalonde M. (1993). Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363 67–69
Sinsabaugh R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42 391–404
Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis. Amsterdam: Academic Publishers
Sousa C. D., Menezes R. S. C., Sampaio E. V. D. B., Lima F. D. (2012). Glomalin: characteristics, production, limitations and contribution to soils. Semina: Ciências Agrárias 33 3033–3044
St Clair S. B., Lynch J. P. (2010). The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335 101–115
Staddon P. L., Ramsey C. B., Ostle N., Ineson P., Fitter A. H. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300 1138–1140 PubMed
Starr M. P. (1975). “A generalized scheme for classifying organismic associations,” in Symposia of the Society for Experimental Biology, No. 29: Symbiosis, eds Jennings D. H., Lee D. L. (Cambridge: Cambridge University Press; ) 1–20 PubMed
Stromberger M. E., Keith A. M., Schmidt O. (2012). Distinct microbial and faunal communities and translocated carbon in Lumbricus terrestris drilospheres. Soil Biol. Biochem. 46 155–162
Talbot J. M., Allison S. D., Treseder K. K. (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct. Ecol. 22 955–963
Tanaka Y., Yano K. (2005). Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ. 28 1247–1254
Tarafdar J. C., Marschner H. (1994). Efficiency of VAMhyphae in utilization of organic phosphorus by wheat plants. Soil Sci. Plant Nutr. 40 593–600
Taylor T. N., Krings M. (2005). Fossil microorganisms and land plants: associations and interactions. Symbiosis 40 119–135
Thonar C., Schnepf A., Frossard E., Roose T., Jansa J. (2011). Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339 231–245
Timonen S., Hurek T. (2006). Characterization of culturable bacterial populations associating with Pinus sylvestris-Suillus bovinus mycorrhizospheres. Can. J. Microbiol. 52 769–778 PubMed
Toljander J. F., Artursson V., Paul L. R., Jansson J. K., Finlay R. D. (2006). Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol. Lett. 254 34–40 PubMed
Toljander J. F., Lindahl B. D., Paul L. R., Elfstrand M., Finlay R. D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 61 295–304 PubMed
Treseder K. K., Turner K. M. (2007). Glomalin in ecosystems. Soil Sci. Soc. Am. J. 71 1257–1266
Wang B., Qiu Y. L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16 299–363 PubMed
Whiffen L. K., Midgley D. J., Mcgee P. A. (2007). Polyphenolic compounds interfere with quantification of protein in soil extracts using the Bradford method. Soil Biol. Biochem. 39 691–694
Wright S. F., Rillig M. C., Nichols K. A. (2000). Glomalin: a soil protein important in carbon sequestration. Abstr. Pap. Am. Chem. Soc. 220 U396–U396
Zavalloni C., Vicca S., Buscher M., De La Providencia I. E., De Boulois H. D., Declerck S., et al. (2012). Exposure to warming and CO2 enrichment promotes greater above-ground biomass, nitrogen, phosphorus and arbuscular mycorrhizal colonization in newly established grasslands. Plant Soil 359 121–136
Zavarzina A. G. (2010). Formation of humin and humic acids by surface precursor polymerization: implications to primitive and well-developed soils. Geochim. Cosmochim. Acta 74 A1196