Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27386079
PubMed Central
PMC4930984
DOI
10.1002/ece3.2207
PII: ECE32207
Knihovny.cz E-zdroje
- Klíčová slova
- Arbuscular mycorrhizal fungi, belowground carbon drain, inoculation, mycorrhizal benefits and costs, nutrient uptake response, shoot nitrogen‐to‐phosphorus ratio,
- Publikační typ
- časopisecké články MeSH
Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)-limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient-poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N-uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the R. irregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non-mycorrhizal plants across the entire range of nutrient supplies.
Zobrazit více v PubMed
Barrett, G. , Campbell C. D., Fitter A. H., and Hodge A.. 2011. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Appl. Soil Ecol. 48:102–105.
Blanke, V. , Renker C., Wagner M., Fullner K., Held M., Kuhn A. J., et al. 2005. Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate‐polluted field site. New Phytol. 166:981–992. PubMed
Bolan, N. S. , Robson A. D., and Barrow N. J.. 1984. Increasing phosphorus supply can increase the infection of plant‐roots by vesicular arbuscular mycorrhizal fungi. Soil Biol. Biochem. 16:419–420.
Brouwer, R. 1983. Functional equilibrium – sense or nonsense. Neth. J. Agric. Sci. 31:335–348.
Casieri, L. , Lahmidi N. A., Doidy J., Veneault‐Fourrey C., A. Migeon , Bonneau L., et al. 2013. Biotrophic transportome in mutualistic plant‐fungal interactions. Mycorrhiza 23:597–625. PubMed
Cruz, C. , Egsgaard H., Trujillo C., Ambus P., Requena N., Martins‐Loucao M. A., et al. 2007. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol. 144:782–792. PubMed PMC
Fellbaum, C. R. , Gachomo E. W., Beesetty Y., Choudhari S., Strahan G. D., Pfeffer P. E., et al. 2012. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc. Natl Acad. Sci. USA 109:2666–2671. PubMed PMC
Fellbaum, C. R. , Mensah J. A., Cloos A. J., Strahan G. E., Pfeffer P. E., Kiers E. T., et al. 2014. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 203:646–656. PubMed
Gange, A. C. , and Ayres R. L.. 1999. On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos 87:615–621.
Govindarajulu, M. , Pfeffer P. E., Jin H. R., Abubaker J., Douds D. D., Allen J. W., et al. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. PubMed
Grimoldi, A. A. , Kavanová M., Lattanzi F. A., Schäufele R., and Schnyder H.. 2006. Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady‐state labelling and gas exchange. New Phytol. 172:544–553. PubMed
Grman, E. , and Robinson T. M. P.. 2013. Resource availability and imbalance affect plant‐mycorrhizal interactions: a field test of three hypotheses. Ecology 94:62–71. PubMed
Gryndler, M. , Vejsadová H., and Vančura V.. 1992. The effect of magnesium‐ions on the vesicular arbuscular mycorrhizal infection of maize roots. New Phytol. 122:455–460. PubMed
van der Heijden, M. G. A. , Bardgett R. D., and van Straalen N. M.. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11:296–310. PubMed
Hetrick, B. A. D. , Kitt D. G., and Wilson G. T.. 1986. The influence of phosphorus fertilization, drought, fungal species, and nonsterile soil on mycorrhizal growth‐response in tall grass prairie plants. Can. J. Bot. 64:1199–1203.
Hodge, A. , and Fitter A. H.. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl Acad. Sci. USA 107:13754–13759. PubMed PMC
Hodge, A. , and Storer K.. 2015. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19.
Hodge, A. , Helgason T., and Fitter A. H.. 2010. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 3:267–273.
Hoeksema, J. D. , Chaudhary V. B., Gehring C. A., Johnson N. C., Karst J., Koide R. T., et al. 2010. A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13:394–407. PubMed
Jakobsen, I. , and Rosendahl L.. 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115:77–83.
Janoušková, M. , Krak K., Wagg C., Štorchová H., Caklová P., and Vosátka M.. 2013. Effects of inoculum additions in the presence of a preestablished arbuscular mycorrhizal fungal community. Appl. Environ. Microb. 79:6507–6515. PubMed PMC
Jansa, J. , Mozafar A., and Frossard E.. 2003. Long‐distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488.
Jansa, J. , Finlay R., Wallander H., Smith F. A., and Smith S. E.. 2011. Role of mycorrhizal symbioses in phosphorus cycling Pp. 137–168 in Bünemann E. K., Oberson A. and Frossard E., eds. Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Springer‐Verlag Berlin Heidelberg, Heidelberg.
Sochorová, L. , Jansa J., Verbruggen E., Hejcman M., Kiers E. T., and Johnson N. C.. 2016. Long‐term agricultural management maximizing hay production can significantly reduce belowground C storage. Agric. Ecosyst. Environ. 220:104–114.
Johansen, A. , Jakobsen I., and Jensen E. S.. 1992. Hyphal transport of 15N‐labelled nitrogen by a vesicular–arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol. 122:281–288. PubMed
Johnson, N. C. 1993. Can fertilization of foil select less mutualistic mycorrhizae. Ecol. Appl. 3:749–757. PubMed
Johnson, N. C. 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185:631–647. PubMed
Johnson, N. C. , Graham J. H., and Smith F. A.. 1997. Functioning of mycorrhizal associations along the mutualism‐parasitism continuum. New Phytol. 135:575–586.
Johnson, N. C. , Rowland D. L., Corkidi L., Egerton‐Warburton L. M., and Allen E. B.. 2003. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908.
Johnson, N. C. , Wilson G. W. T., Wilson J. A., Miller R. M., and Bowker M. A.. 2015. Mycorrhizal phenotypes and the Law of the Minimum. New Phytol. 205:1473–1484. PubMed
Kaschuk, G. , Kuyper T. W., Leffelaar P. A., Hungria M., and Giller K. E.. 2009. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem. 41:1233–1244.
Kaschuk, G. , Leffelaar P. A., Giller K. E., Alberton O., Hungria M., and Kuyper T. W.. 2010. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta‐analysis of potential photosynthate limitation of symbioses. Soil Biol. Biochem. 42:125–127.
Kiers, E. T. , Duhamel M., Beesetty Y., Mensah J. A., Franken O., Verbruggen E., et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882. PubMed
Klironomos, J. N. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301.
Koerselman, W. , and Meuleman A. F. M.. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33:1441–1450.
Konvalinková, T. , Püschel D., Janoušková M., Gryndler M., and Jansa J.. 2015. Duration and intensity of shade differentially affects mycorrhizal growth‐ and phosphorus uptake responses of Medicago truncatula . Front. Plant Sci. 6:65. PubMed PMC
Koske, R. E. , and Gemma J. N.. 1989. A modified procedure for staining roots to detect VA‐mycorrhizas. Mycol. Res. 92:486–505.
Lendenmann, M. , Thonar C., Barnard R. L., Salmon Y., Werner R. A., Frossard E., et al. 2011. Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21:689–702. PubMed
Mäder, P. , Vierheilig H., Streitwolf‐Engel R., Boller T., Frey B., Christie P., et al. 2000. Transport of N‐15 from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol. 146:155–161.
Malcová, R. , Rydlová J., and Vosátka M.. 2003. Metal‐free cultivation of Glomus sp BEG 140 isolated from Mn‐contaminated soil reduces tolerance to Mn. Mycorrhiza 13:151–157. PubMed
McGonigle, T. P. , Miller M. H., Evans D. G., Fairchild G. L., and Swan J. A.. 1990. A new method which gives an objective measure of colonization of roots by vesicular‐arbuscular mycorrhizal fungi. New Phytol. 115:495–501. PubMed
Munkvold, L. , Kjoller R., Vestberg M., Rosendahl S., and Jakobsen I.. 2004. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol. 164:357–364. PubMed
Noyd, R. K. , Pfleger F. L., and Russelle M. P.. 1995. Interactions between native prairie grasses and indigenous arbuscular mycorrhizal fungi – implications for reclamation of taconite iron‐ore tailing. New Phytol. 129:651–660.
Ohno, T. , and Zibilske L. M.. 1991. Determination of low concentrations of phosphorus is soil extracts using malachite green. Soil Sci. Soc. Am. J. 55:892–895.
Pánková, H. , Münzbergová Z., Rydlová J., and Vosátka M.. 2011. The response of Aster amellus (Asteraceae) to mycorrhiza depends on the origins of both the soil and the fungi. Am. J. Bot. 98:850–858. PubMed
van der Ploeg, R. R. , Bohm W., and Kirkham M. B.. 1999. On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci. Soc. Am. J. 63:1055–1062.
Propster, J. R. , and Johnson N. C.. 2015. Uncoupling the effects of phosphorus and precipitation on arbuscular mycorrhizas in the Serengeti. Plant Soil 388:21–34.
Rausch, C. , Daram P., Brunner S., Jansa J., Laloi M., Leggewie G., et al. 2001. A phosphate transporter expressed in arbuscule‐containing cells in potato. Nature 414:462–466. PubMed
Raven, J. A. , and Edwards D.. 2001. Roots: evolutionary origins and biogeochemical significance. J. Exp. Bot. 52:381–401. PubMed
Řezáčová, V. , Gryndler M., Bukovská P., Šmilauer P., and Jansa J.. 2016. Molecular community analysis of arbuscular mycorrhizal fungi – contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia, doi:10.1016/j.pedobi.2016.04.002. in press. DOI
Smith, S. E. , and Read D. J.. 2008. Mycorrhizal symbiosis. Academic Press, Cambridge, in press.
Teste, F. P. , Laliberte E., Lambers H., Auer Y., Kramer S., and Kandeler E.. 2016. Mycorrhizal fungal biomass and scavenging declines in phosphorus‐impoverished soils during ecosystem retrogression. Soil Biol. Biochem. 92:119–132.
Treseder, K. K. , and Allen M. F.. 2002. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol. 155:507–515. PubMed
Wright, D. P. , Read D. J., and Scholes J. D.. 1998. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ. 21:881–891.
Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes
Can cardiolipins be used as a biomarker for arbuscular mycorrhizal fungi?
Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin
Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth
Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi