Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply

. 2016 Jul ; 6 (13) : 4332-46. [epub] 20160530

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27386079

Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)-limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient-poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N-uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the R. irregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non-mycorrhizal plants across the entire range of nutrient supplies.

Zobrazit více v PubMed

Barrett, G. , Campbell C. D., Fitter A. H., and Hodge A.. 2011. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Appl. Soil Ecol. 48:102–105.

Blanke, V. , Renker C., Wagner M., Fullner K., Held M., Kuhn A. J., et al. 2005. Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate‐polluted field site. New Phytol. 166:981–992. PubMed

Bolan, N. S. , Robson A. D., and Barrow N. J.. 1984. Increasing phosphorus supply can increase the infection of plant‐roots by vesicular arbuscular mycorrhizal fungi. Soil Biol. Biochem. 16:419–420.

Brouwer, R. 1983. Functional equilibrium – sense or nonsense. Neth. J. Agric. Sci. 31:335–348.

Casieri, L. , Lahmidi N. A., Doidy J., Veneault‐Fourrey C., A. Migeon , Bonneau L., et al. 2013. Biotrophic transportome in mutualistic plant‐fungal interactions. Mycorrhiza 23:597–625. PubMed

Cruz, C. , Egsgaard H., Trujillo C., Ambus P., Requena N., Martins‐Loucao M. A., et al. 2007. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol. 144:782–792. PubMed PMC

Fellbaum, C. R. , Gachomo E. W., Beesetty Y., Choudhari S., Strahan G. D., Pfeffer P. E., et al. 2012. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc. Natl Acad. Sci. USA 109:2666–2671. PubMed PMC

Fellbaum, C. R. , Mensah J. A., Cloos A. J., Strahan G. E., Pfeffer P. E., Kiers E. T., et al. 2014. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 203:646–656. PubMed

Gange, A. C. , and Ayres R. L.. 1999. On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos 87:615–621.

Govindarajulu, M. , Pfeffer P. E., Jin H. R., Abubaker J., Douds D. D., Allen J. W., et al. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. PubMed

Grimoldi, A. A. , Kavanová M., Lattanzi F. A., Schäufele R., and Schnyder H.. 2006. Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady‐state labelling and gas exchange. New Phytol. 172:544–553. PubMed

Grman, E. , and Robinson T. M. P.. 2013. Resource availability and imbalance affect plant‐mycorrhizal interactions: a field test of three hypotheses. Ecology 94:62–71. PubMed

Gryndler, M. , Vejsadová H., and Vančura V.. 1992. The effect of magnesium‐ions on the vesicular arbuscular mycorrhizal infection of maize roots. New Phytol. 122:455–460. PubMed

van der Heijden, M. G. A. , Bardgett R. D., and van Straalen N. M.. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11:296–310. PubMed

Hetrick, B. A. D. , Kitt D. G., and Wilson G. T.. 1986. The influence of phosphorus fertilization, drought, fungal species, and nonsterile soil on mycorrhizal growth‐response in tall grass prairie plants. Can. J. Bot. 64:1199–1203.

Hodge, A. , and Fitter A. H.. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl Acad. Sci. USA 107:13754–13759. PubMed PMC

Hodge, A. , and Storer K.. 2015. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19.

Hodge, A. , Helgason T., and Fitter A. H.. 2010. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 3:267–273.

Hoeksema, J. D. , Chaudhary V. B., Gehring C. A., Johnson N. C., Karst J., Koide R. T., et al. 2010. A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13:394–407. PubMed

Jakobsen, I. , and Rosendahl L.. 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115:77–83.

Janoušková, M. , Krak K., Wagg C., Štorchová H., Caklová P., and Vosátka M.. 2013. Effects of inoculum additions in the presence of a preestablished arbuscular mycorrhizal fungal community. Appl. Environ. Microb. 79:6507–6515. PubMed PMC

Jansa, J. , Mozafar A., and Frossard E.. 2003. Long‐distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488.

Jansa, J. , Finlay R., Wallander H., Smith F. A., and Smith S. E.. 2011. Role of mycorrhizal symbioses in phosphorus cycling Pp. 137–168 in Bünemann E. K., Oberson A. and Frossard E., eds. Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Springer‐Verlag Berlin Heidelberg, Heidelberg.

Sochorová, L. , Jansa J., Verbruggen E., Hejcman M., Kiers E. T., and Johnson N. C.. 2016. Long‐term agricultural management maximizing hay production can significantly reduce belowground C storage. Agric. Ecosyst. Environ. 220:104–114.

Johansen, A. , Jakobsen I., and Jensen E. S.. 1992. Hyphal transport of 15N‐labelled nitrogen by a vesicular–arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol. 122:281–288. PubMed

Johnson, N. C. 1993. Can fertilization of foil select less mutualistic mycorrhizae. Ecol. Appl. 3:749–757. PubMed

Johnson, N. C. 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185:631–647. PubMed

Johnson, N. C. , Graham J. H., and Smith F. A.. 1997. Functioning of mycorrhizal associations along the mutualism‐parasitism continuum. New Phytol. 135:575–586.

Johnson, N. C. , Rowland D. L., Corkidi L., Egerton‐Warburton L. M., and Allen E. B.. 2003. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908.

Johnson, N. C. , Wilson G. W. T., Wilson J. A., Miller R. M., and Bowker M. A.. 2015. Mycorrhizal phenotypes and the Law of the Minimum. New Phytol. 205:1473–1484. PubMed

Kaschuk, G. , Kuyper T. W., Leffelaar P. A., Hungria M., and Giller K. E.. 2009. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem. 41:1233–1244.

Kaschuk, G. , Leffelaar P. A., Giller K. E., Alberton O., Hungria M., and Kuyper T. W.. 2010. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta‐analysis of potential photosynthate limitation of symbioses. Soil Biol. Biochem. 42:125–127.

Kiers, E. T. , Duhamel M., Beesetty Y., Mensah J. A., Franken O., Verbruggen E., et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882. PubMed

Klironomos, J. N. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301.

Koerselman, W. , and Meuleman A. F. M.. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33:1441–1450.

Konvalinková, T. , Püschel D., Janoušková M., Gryndler M., and Jansa J.. 2015. Duration and intensity of shade differentially affects mycorrhizal growth‐ and phosphorus uptake responses of Medicago truncatula . Front. Plant Sci. 6:65. PubMed PMC

Koske, R. E. , and Gemma J. N.. 1989. A modified procedure for staining roots to detect VA‐mycorrhizas. Mycol. Res. 92:486–505.

Lendenmann, M. , Thonar C., Barnard R. L., Salmon Y., Werner R. A., Frossard E., et al. 2011. Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21:689–702. PubMed

Mäder, P. , Vierheilig H., Streitwolf‐Engel R., Boller T., Frey B., Christie P., et al. 2000. Transport of N‐15 from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol. 146:155–161.

Malcová, R. , Rydlová J., and Vosátka M.. 2003. Metal‐free cultivation of Glomus sp BEG 140 isolated from Mn‐contaminated soil reduces tolerance to Mn. Mycorrhiza 13:151–157. PubMed

McGonigle, T. P. , Miller M. H., Evans D. G., Fairchild G. L., and Swan J. A.. 1990. A new method which gives an objective measure of colonization of roots by vesicular‐arbuscular mycorrhizal fungi. New Phytol. 115:495–501. PubMed

Munkvold, L. , Kjoller R., Vestberg M., Rosendahl S., and Jakobsen I.. 2004. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol. 164:357–364. PubMed

Noyd, R. K. , Pfleger F. L., and Russelle M. P.. 1995. Interactions between native prairie grasses and indigenous arbuscular mycorrhizal fungi – implications for reclamation of taconite iron‐ore tailing. New Phytol. 129:651–660.

Ohno, T. , and Zibilske L. M.. 1991. Determination of low concentrations of phosphorus is soil extracts using malachite green. Soil Sci. Soc. Am. J. 55:892–895.

Pánková, H. , Münzbergová Z., Rydlová J., and Vosátka M.. 2011. The response of Aster amellus (Asteraceae) to mycorrhiza depends on the origins of both the soil and the fungi. Am. J. Bot. 98:850–858. PubMed

van der Ploeg, R. R. , Bohm W., and Kirkham M. B.. 1999. On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci. Soc. Am. J. 63:1055–1062.

Propster, J. R. , and Johnson N. C.. 2015. Uncoupling the effects of phosphorus and precipitation on arbuscular mycorrhizas in the Serengeti. Plant Soil 388:21–34.

Rausch, C. , Daram P., Brunner S., Jansa J., Laloi M., Leggewie G., et al. 2001. A phosphate transporter expressed in arbuscule‐containing cells in potato. Nature 414:462–466. PubMed

Raven, J. A. , and Edwards D.. 2001. Roots: evolutionary origins and biogeochemical significance. J. Exp. Bot. 52:381–401. PubMed

Řezáčová, V. , Gryndler M., Bukovská P., Šmilauer P., and Jansa J.. 2016. Molecular community analysis of arbuscular mycorrhizal fungi – contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia, doi:10.1016/j.pedobi.2016.04.002. in press. DOI

Smith, S. E. , and Read D. J.. 2008. Mycorrhizal symbiosis. Academic Press, Cambridge, in press.

Teste, F. P. , Laliberte E., Lambers H., Auer Y., Kramer S., and Kandeler E.. 2016. Mycorrhizal fungal biomass and scavenging declines in phosphorus‐impoverished soils during ecosystem retrogression. Soil Biol. Biochem. 92:119–132.

Treseder, K. K. , and Allen M. F.. 2002. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol. 155:507–515. PubMed

Wright, D. P. , Read D. J., and Scholes J. D.. 1998. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ. 21:881–891.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes

. 2024 Jul ; 34 (4) : 303-316. [epub] 20240603

Divergent colonization traits, convergent benefits: different species of arbuscular mycorrhizal fungi alleviate Meloidogyne incognita damage in tomato

. 2024 Apr ; 34 (1-2) : 145-158. [epub] 20240305

Can cardiolipins be used as a biomarker for arbuscular mycorrhizal fungi?

. 2023 Nov ; 33 (5-6) : 399-408. [epub] 20231010

Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: A triple (13C, 15N and 33P) labeling study

. 2022 ; 13 () : 1047270. [epub] 20221215

Arbuscular Mycorrhiza and Nitrification: Disentangling Processes and Players by Using Synthetic Nitrification Inhibitors

. 2022 Oct 26 ; 88 (20) : e0136922. [epub] 20221003

Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist

. 2022 Mar ; 16 (3) : 676-685. [epub] 20210920

Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin

. 2021 ; 12 () : 574060. [epub] 20210219

Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth

. 2020 Jan ; 30 (1) : 63-77. [epub] 20200215

Abiotic contexts consistently influence mycorrhiza functioning independently of the composition of synthetic arbuscular mycorrhizal fungal communities

. 2019 Mar ; 29 (2) : 127-139. [epub] 20190105

Soil Matrix Determines the Outcome of Interaction Between Mycorrhizal Symbiosis and Biochar for Andropogon gerardii Growth and Nutrition

. 2018 ; 9 () : 2862. [epub] 20181127

Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes

. 2018 ; 9 () : 449. [epub] 20180406

Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers?

. 2018 Apr ; 28 (3) : 269-283. [epub] 20180217

Arbuscular Mycorrhiza Stimulates Biological Nitrogen Fixation in Two Medicago spp. through Improved Phosphorus Acquisition

. 2017 ; 8 () : 390. [epub] 20170327

Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi

. 2017 Jan ; 27 (1) : 35-51. [epub] 20160822

Nutrient limitation drives response of Calamagrostis epigejos to arbuscular mycorrhiza in primary succession

. 2016 Oct ; 26 (7) : 757-67. [epub] 20160603

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...