Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: A triple (13C, 15N and 33P) labeling study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36589136
PubMed Central
PMC9799978
DOI
10.3389/fpls.2022.1047270
Knihovny.cz E-zdroje
- Klíčová slova
- arbuscular mycorrhizal symbiosis, carbon, isotopic labeling, mineral nutrients, plant competition and co-existence, preferential resource allocation,
- Publikační typ
- časopisecké články MeSH
Plant-plant interactions and coexistence can be directly mediated by symbiotic arbuscular mycorrhizal (AM) fungi through asymmetric resource exchange between the plant and fungal partners. However, little is known about the effects of AM fungal presence on resource allocation in mixed plant stands. Here, we examined how phosphorus (P), nitrogen (N) and carbon (C) resources were distributed between coexisting con- and heterospecific plant individuals in the presence or absence of AM fungus, using radio- and stable isotopes. Congeneric plant species, Panicum bisulcatum and P. maximum, inoculated or not with Rhizophagus irregularis, were grown in two different culture systems, mono- and mixed-species stands. Pots were subjected to different shading regimes to manipulate C sink-source strengths. In monocultures, P. maximum gained more mycorrhizal phosphorus uptake benefits than P.bisulcatum. However, in the mixed culture, the AM fungus appeared to preferentially transfer nutrients (33P and 15N) to P.bisulcatum compared to P. maximum. Further, we observed higher 13C allocation to mycorrhiza by P.bisulcatum in mixed- compared to the mono-systems, which likely contributed to improved competitiveness in the mixed cultures of P.bisulcatum vs. P. maximum regardless of the shading regime. Our results suggest that the presence of mycorrhiza influenced competitiveness of the two Panicum species in mixed stands in favor of those with high quality partner, P. bisulcatum, which provided more C to the mycorrhizal networks. However, in mono-species systems where the AM fungus had no partner choice, even the lower quality partner (i.e., P.maximum) could also have benefitted from the symbiosis. Future research should separate the various contributors (roots vs. common mycorrhizal network) and mechanisms of resource exchange in such a multifaceted interaction.
Department of Plant Pathology and Microbiology Iowa State University Ames IA United States
Laboratory of Fungal Biology Institute of Microbiology Czech Academy of Sciences Praha Czechia
Zobrazit více v PubMed
Aarssen L. W. (1989). Competitive ability and species coexistence: a 'plant's-eye' view. Oikos, 56, 386–401. doi: 10.2307/3565625 DOI
Argüello A., O'Brien M. J., van der Heijden M. G. A., Wiemken A., Schmid B., Niklaus P. A. (2016). Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Ecol. Lett. 19, 648–656. doi: 10.1111/ele.12601 PubMed DOI
Augé R. M., Toler H. D., Saxton A. M. J. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25, 13–24. doi: 10.1007/s00572-014-0585-4 PubMed DOI
Babikova Z., Gilbert L., Bruce T. J. A., Birkett M., Caulfield J. C., Woodcock C., et al. . (2013). Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835–843. doi: 10.1111/ele.12115 PubMed DOI
Bengtsson J., Fagerström T., Rydin H. (1994). Competition and coexistence in plant communities. Trends Ecol. Evol. 9, 246–250. doi: 10.1016/0169-5347(94)90289-5 PubMed DOI
Bever J. D., Dickie I. A., Facelli E., Facelli J. M., Klironomos J., Moora M., et al. . (2010). Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478. doi: 10.1016/j.tree.2010.05.004 PubMed DOI PMC
Bever J. D., Richardson S. C., Lawrence B. M., Holmes J., Watson M. (2009). Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 12, 13–21. doi: 10.1111/j.1461-0248.2008.01254.x PubMed DOI
Booth M. G., Hoeksema J. D. (2010). Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91, 2294–2302. doi: 10.1890/09-1139.1 PubMed DOI
Brundrett M. C., Tedersoo L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115. doi: 10.1111/nph.14976 PubMed DOI
Bücking H., Mensah J. A., Fellbaum C. R. (2016). Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun. Integr. Biol. 9, e1107684. doi: 10.1080/19420889.2015.1107684 PubMed DOI PMC
Bukovská P., Bonkowski M., Konvalinková T., Beskid O., Hujslová M., Püschel D., et al. . (2018). Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers? Mycorrhiza 28, 465–465. doi: 10.1007/s00572-018-0851-y PubMed DOI
Bukovská P., Rozmoš M., Kotianová M., Gančarčíková K., Dudáš M., Hršelová H., et al. . (2021). Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. Front. Microbiol. 12, 325. doi: 10.3389/fmicb.2021.574060 PubMed DOI PMC
Connell J. H. (1983). On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–696. doi: 10.1086/284165 DOI
Crawley M. J. (2012). The r book (United Kingdom: John Wiley & Sons; ). doi: 10.1002/9781118448908 DOI
Davison J., García de León D., Zobel M., Moora M., Bueno C. G., Barceló M., et al. . (2020). Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytol. 226, 1117–1128. doi: 10.1111/nph.16423 PubMed DOI
Dudáš M., Pjevac P., Kotianová M., Gančarčíková K., Rozmoš M., Hršelová H., et al. . (2022). Arbuscular mycorrhiza and nitrification: Disentangling processes and players through using synthetic nitrification inhibitors. Appl. Environ. Microbiol. 88, 20. doi: 10.1128/aem.01369-22 PubMed DOI PMC
Dybzinski R., Tilman D. (2007). Resource use patterns predict long-term outcomes of plant competition for nutrients and light. Am. Nat. 170, 305–318. doi: 10.1086/519857 PubMed DOI
Edwards E. J., Still C. J. (2008). Climate, phylogeny and the ecological distribution of C4 grasses. Ecol. Lett. 11, 266–276. doi: 10.1111/j.1461-0248.2007.01144.x PubMed DOI
Faghihinia M., Zou Y., Bai Y., Dudáš M., Marrs R., Staddon P. L. (2021). Grazing intensity rather than host plant’s palatability shapes the community of arbuscular mycorrhizal fungi in a steppe grassland. Microb. Ecol. 9, 1–10. doi: 10.1007/s00248-021-01920-7 PubMed DOI
Faghihinia M., Zou Y., Chen Z., Bai Y., Li W., Marrs R., et al. . (2020). Environmental drivers of grazing effects on arbuscular mycorrhizal fungi in grasslands. Appl. Soil Ecol. 153, 103591. doi: 10.1016/j.apsoil.2020.103591 DOI
Fellbaum C. R., Mensah J. A., Cloos A. J., Strahan G. E., Pfeffer P. E., Kiers E. T., et al. . (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 203, 646–656. doi: 10.1111/nph.12827 PubMed DOI
Füzy A., Bothe H., Molnár E., Biró B. (2014). Mycorrhizal symbiosis effects on growth of chalk false-brome (Brachypodium pinnatum) are dependent on the environmental light regime. J. Plant Physiol. 171, 1–6. doi: 10.1016/j.jplph.2013.11.002 PubMed DOI
Gause G. F. (1934). Experimental analysis of vito volterra's mathematical theory of the struggle for existence. Science 79, 16–17. doi: 10.1126/science.79.2036.16.b PubMed DOI
Gorzelak M. A., Asay A. K., Pickles B. J., Simard S. W. (2015). Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 7, plv050. doi: 10.1093/aobpla/plv050 PubMed DOI PMC
Gryndler M., Černá L., Bukovská P., Hršelová H., Jansa J. (2014). Tuber aestivum association with non-host roots. Mycorrhiza 24, 603–610. doi: 10.1007/s00572-014-0580-9 PubMed DOI
Gryndler M., Šmilauer P., Püschel D., Bukovská P., Hršelová H., Hujslová M., et al. . (2018). Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28, 435–450. doi: 10.1007/s00572-018-0844-x PubMed DOI
Hammer E. C., Pallon J., Wallander H., Olsson P. A. (2011). Tit for tat? a mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol. Ecol. 76, 236–244. doi: 10.1111/j.1574-6941.2011.01043.x PubMed DOI
Hempel S., Götzenberger L., Kühn I., Michalski S. G., Rillig M. C., Zobel M., et al. . (2013). Mycorrhizas in the central European flora: relationships with plant life history traits and ecology. Ecology 94, 1389–1399. doi: 10.1890/12-1700.1 PubMed DOI
Ingraffia R., Giambalvo D., Frenda A. S., Roma E., Ruisi P., Amato G. (2021). Mycorrhizae differentially influence the transfer of nitrogen among associated plants and their competitive relationships. Appl. Soil Ecol. 168, 104127. doi: 10.1016/j.apsoil.2021.104127 DOI
Jakobsen I., Hammer E. C. (2015). “Nutrient dynamics in arbuscular mycorrhizal networks,” in Mycorrhizal networks. ecological studies (Analysis and synthesis). Ed. Horton T. (Dordrecht: Springer; ), 91–131. doi: 10.1007/978-94-017-7395-9_4. DOI
Jansa J., Šmilauer P., Borovička J., Hršelová H., Forczek S. T., Slámová K., et al. . (2020). Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza 30, 63–77. doi: 10.1007/s00572-020-00937-z PubMed DOI
Johnson N. C. (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185, 631–647. doi: 10.1111/j.1469-8137.2009.03110.x PubMed DOI
Kaschuk G., Kuyper T. W., Leffelaar P. A., Hungria M., Giller K. E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem. 41, 1233–1244. doi: 10.1016/j.soilbio.2009.03.005 DOI
Kiers E. T., Duhamel M., Beesetty Y., Mensah J. A., Franken O., Verbruggen E., et al. . (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882. doi: 10.1126/science.1208473 PubMed DOI
Kiers E. T., van der Heijden M. G. A. (2006). Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87, 1627–1636. doi: 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2 PubMed DOI
Kikuchi Y., Hijikata N., Ohtomo R., Handa Y., Kawaguchi M., Saito K., et al. . (2016). Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytol. 211, 1202–1208. doi: 10.1111/nph.14016 PubMed DOI
Klironomos J. N. (2000). Host-specificity and functional diversity among arbuscular mycorrhizal fungi, in: Proceedings of the 8th International Symposium on Microbial Ecology, Eds. Bell C.R., Brylinski M., Johnson-Green P. (Halifax, Canada: Atlantic Canada Society from Microbial Ecology; ), 845–851.
Konvalinková T., Jansa J. (2016). Lights off for arbuscular mycorrhiza: On its symbiotic functioning under light deprivation. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.00782 PubMed DOI PMC
Konvalinková T., Püschel D., Janoušková M., Gryndler M., Jansa J. (2015). Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula . Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00065 PubMed DOI PMC
Konvalinková T., Püschel D., Řezáčová V., Gryndlerová H., Jansa J. (2017). Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419, 319–333. doi: 10.1007/s11104-017-3350-6 DOI
Lang M., Li X., Zheng C., Li H., Zhang J. (2021). Shading mediates the response of mycorrhizal maize (Zea mays l.) seedlings under varying levels of phosphorus. Appl. Soil Ecol. 166, 104060. doi: 10.1016/j.apsoil.2021.104060 DOI
Leake J., Johnson D., Donnelly D., Muckle G., Boddy L., Read D. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045. doi: 10.1139/b04-060 DOI
Lekberg Y., Hammer E. C., Olsson P. A. (2010). Plants as resource islands and storage units – adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol. Ecol. 74, 336–345. doi: 10.1111/j.1574-6941.2010.00956.x PubMed DOI
Li C., Li H., Hoffland E., Zhang F., Zhang J., Kuyper T. W. (2022). Common mycorrhizal networks asymmetrically improve chickpea n and p acquisition and cause overyielding by a millet/chickpea mixture. Plant Soil 472, 279–293. doi: 10.1007/s11104-021-05232-0 DOI
MacArthur R., Levins R. (1967). The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385. doi: 10.1086/282505 DOI
Merrild M. P., Ambus P., Rosendahl S., Jakobsen I. (2013). Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytol. 200, 229–240. doi: 10.1111/nph.12351 PubMed DOI
Montesinos-Navarro A., Segarra-Moragues J. G., Valiente-Banuet A., Verdú M. (2012). Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytol. 196, 835–844. doi: 10.1111/j.1469-8137.2012.04290.x PubMed DOI
Montesinos-Navarro A., Valiente-Banuet A., Verdú M. (2019). Processes underlying the effect of mycorrhizal symbiosis on plant-plant interactions. Fungal Ecol. 40, 98–106. doi: 10.1016/j.funeco.2018.05.003 DOI
Moora M., Zobel M. (2010). Arbuscular mycorrhizae and plant-plant interactions: impact of invisible world on visible patterns, in Positive plant interactions and community dynamics, Ed. Pugnaire F.I. (Boca Raton: CRC Press; ) 79–98. doi: 10.1201/9781439824955 DOI
Nakano-Hylander A., Olsson P. A. (2007). Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonisation of plant seedlings. Soil Biol. Biochem. 39, 1450–1458. doi: 10.1016/j.soilbio.2006.12.031 DOI
Ohno T., Zibilske L. M. (1991). Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. America J. 55, 892–895. doi: 10.2136/sssaj1991.03615995005500030046x DOI
Olsson P. A., Rahm J., Aliasgharzad N. (2010). Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol. Ecol. 72, 125–131. doi: 10.1111/j.1574-6941.2009.00833.x PubMed DOI
Pinto H., Sharwood R. E., Tissue D. T., Ghannoum O. (2014). Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2 . J. Exp. Bot. 65, 3669–3681. doi: 10.1093/jxb/eru155 PubMed DOI PMC
Püschel D., Janoušková M., Hujslová M., Slavíková R., Gryndlerová H., Jansa J. (2016). Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol. Evol. 6, 4332–4346. doi: 10.1002/ece3.2207 PubMed DOI PMC
Püschel D., Janoušková M., Voříšková A., Gryndlerová H., Vosátka M., Jansa J. (2017). Arbuscular mycorrhiza stimulates biological nitrogen fixation in two medicago spp. through improved phosphorus acquisition. Front. Plant Sci. 8, 390. doi: 10.3389/fpls.2017.00390 PubMed DOI PMC
R Core Team (2021). R: A language and environment for statistical computing (www.R-project). Vienna, Austria: R Foundation for Statistical Computing. [Accessed 18 March 2022].
Řezáčová V., Slavíková R., Konvalinková T., Hujslová M., Gryndlerová H., Gryndler M., et al. . (2017). Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses–a case of dysfunctional symbiosis. Pedobiologia 62, 48–55. doi: 10.1016/j.pedobi.2017.05.004 DOI
Řezáčová V., Slavíková R., Zemková L., Konvalinková T., Procházková V., Šťovíček V., et al. . (2018. a). Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4 Panicum grasses. Plant Soil 425, 441–456. doi: 10.1007/s11104-018-3606-9 DOI
Řezáčová V., Zemková L., Beskid O., Püschel D., Konvalinková T., Hujslová M., et al. . (2018. b). Little cross-feeding of the mycorrhizal networks shared between C3-Panicum bisulcatum and C4-Panicum maximum under different temperature regimes. Front. Plant Sci. 9, 449. doi: 10.3389/fpls.2018.00449 PubMed DOI PMC
Scheublin T. R., van logtestijn R. S. P., van der heijden M. G. A. (2007). Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J. Ecol. 95, 631–638. doi: 10.1111/j.1365-2745.2007.01244.x DOI
Schoener T. W. (1983). Field experiments on interspecific competition. Am. Nat. 122, 240–285. doi: 10.1086/284133 DOI
Selosse M.-A., Richard F., He X., Simard S. W. (2006). Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628. doi: 10.1016/j.tree.2006.07.003 PubMed DOI
Sepp S. K., Davison J., Jairus T., Vasar M., Moora M., Zobel M., et al. . (2019). Non-random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont specificity. Mol. Biol. 28, 365–378. doi: 10.1111/mec.14924 PubMed DOI
Shi G., Liu Y., Johnson N. C., Olsson P. A., Mao L., Cheng G., et al. . (2014). Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant Soil 378, 173–188. doi: 10.1007/s11104-014-2022-z DOI
Simard S. W., Beiler K. J., Bingham M. A., Deslippe J. R., Philip L. J., Teste F. P. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biol. Rev. 26, 39–60. doi: 10.1016/j.fbr.2012.01.001 DOI
Slavíková R., Püschel D., Janoušková M., Hujslová M., Konvalinková T., Gryndlerová H., et al. . (2017). Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. Mycorrhiza 27, 35–51. doi: 10.1007/s00572-016-0731-2 PubMed DOI
Smith S., Read D. (2008). Mycorrhizal symbiosis (San Diego, USA: Academic Press; ). doi: 10.1016/B978-0-12-370526-6.X5001-6 DOI
Smith S. E., Smith F. A., Jakobsen I. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal p uptake pathway is not correlated with mycorrhizal responses in growth or total p uptake. New Phytol. 162, 511–524. doi: 10.1111/j.1469-8137.2004.01039.x DOI
Song Y. Y., Ye M., Li C., He X., Zhu-Salzman K., Wang R. L., et al. . (2014). Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci. Rep. 4, 3915. doi: 10.1038/srep03915 PubMed DOI PMC
Spatafora J. W., Chang Y., Benny G. L., Lazarus K., Smith M. E., Berbee M. L., et al. . (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046. doi: 10.3852/16-042 PubMed DOI PMC
Thonar C., Erb A., Jansa J. (2012). Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities–marker design, verification, calibration and field validation. Mol. Ecol. Resour. 12, 219–232. doi: 10.1111/j.1755-0998.2011.03086.x PubMed DOI
Tilman D. (1982). Resource competition and community structure (United States: Princeton University Press; ). PubMed
Vandenkoornhuyse P., Ridgway K. P., Watson I. J., Fitter A. H., Young J. P. (2003). Co-Existing grass species have distinctive arbuscular mycorrhizal communities. Mol. Biol. 12, 3085–3095. doi: 10.1046/j.1365-294X.2003.01967.x PubMed DOI
van der Heijden M. G. A., Bakker R., Verwaal J., Scheublin T. R., Rutten M., Van Logtestijn R., et al. . (2006). Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol. Ecol. 56, 178–187. doi: 10.1111/j.1574-6941.2006.00086.x PubMed DOI
van der Heijden M. G. A., Bardgett R. D., Van Straalen N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310. doi: 10.1111/j.1461-0248.2007.01139.x PubMed DOI
van der Heijden M. G. A., Horton T. R. (2009). Socialism in soil? the importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97, 1139–1150. doi: 10.1111/j.1365-2745.2009.01570.x DOI
van der Heijden M. G. A., Klironomos J. N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., et al. . (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72. doi: 10.1038/23932 DOI
Vogelsang K. M., Reynolds H. L., Bever J. D. (2006). Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172, 554–562. doi: 10.1111/j.1469-8137.2006.01854.x PubMed DOI
Voříšková A., Jansa J., Püschel D., Vosátka M., Šmilauer P., Janoušková M. (2019). Abiotic contexts consistently influence mycorrhiza functioning independently of the composition of synthetic arbuscular mycorrhizal fungal communities. Mycorrhiza 29, 127–139. doi: 10.1007/s00572-018-00878-8 PubMed DOI
Walder F., Niemann H., Natarajan M., Lehmann M. F., Boller T., Wiemken A. (2012). Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 159, 789–797. doi: 10.1104/pp.112.195727 PubMed DOI PMC
Wang G., Sheng L., Zhao D., Sheng J., Wang X., Liao H. (2016). Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01901 PubMed DOI PMC
Weremijewicz J., Janos D. P. (2013). Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. New Phytol. 198, 203–213. doi: 10.1111/nph.12125 PubMed DOI
White H., Macdonald G. M. (1980). Some large-sample tests for nonnormality in the linear regression model. J. Am. Stat. Assoc. 75, 16–28. doi: 10.1080/01621459.1980.10477415 DOI
Wilson J. B. (2011). The twelve theories of co-existence in plant communities: the doubtful, the important and the unexplored. J. Vegetation Sci. 22, 184–195. doi: 10.1111/j.1654-1103.2010.01226.x DOI
Younginger B. S., Sirová D., Cruzan M. B., Ballhorn D. J. (2017). Is biomass a reliable estimate of plant fitness? Appl. Plant Sci. 5, 1600094. doi: 10.3732/apps.1600094 PubMed DOI PMC
Zai X.-M., Fan J.-J., Hao Z.-P., Liu X.-M., Zhang W.-X. (2021). Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment. Sci. Rep. 11, 5761. doi: 10.1038/s41598-021-84284-9 PubMed DOI PMC
Zheng C., Ji B., Zhang J., Zhang F., Bever J. D. (2015). Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. New Phytol. 205, 361–368. doi: 10.1111/nph.13025 PubMed DOI
Nutrient-dependent cross-kingdom interactions in the hyphosphere of an arbuscular mycorrhizal fungus