Nutrient-dependent cross-kingdom interactions in the hyphosphere of an arbuscular mycorrhizal fungus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38239731
PubMed Central
PMC10794670
DOI
10.3389/fmicb.2023.1284648
Knihovny.cz E-zdroje
- Klíčová slova
- arbuscular mycorrhizal (AM) fungi/al, extraradical hyphae, hyphosphere, inorganic and organic, microbiome, networks, nutrient cycling, nutrient mobilization,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The hyphosphere of arbuscular mycorrhizal (AM) fungi is teeming with microbial life. Yet, the influence of nutrient availability or nutrient forms on the hyphosphere microbiomes is still poorly understood. METHODS: Here, we examined how the microbial community (prokaryotic, fungal, protistan) was affected by the presence of the AM fungus Rhizophagus irregularis in the rhizosphere and the root-free zone, and how different nitrogen (N) and phosphorus (P) supplements into the root-free compartment influenced the communities. RESULTS: The presence of AM fungus greatly affected microbial communities both in the rhizosphere and the root-free zone, with prokaryotic communities being affected the most. Protists were the only group of microbes whose richness and diversity were significantly reduced by the presence of the AM fungus. Our results showed that the type of nutrients AM fungi encounter in localized patches modulate the structure of hyphosphere microbial communities. In contrast we did not observe any effects of the AM fungus on (non-mycorrhizal) fungal community composition. Compared to the non-mycorrhizal control, the root-free zone with the AM fungus (i.e., the AM fungal hyphosphere) was enriched with Alphaproteobacteria, some micropredatory and copiotroph bacterial taxa (e.g., Xanthomonadaceae and Bacteroidota), and the poorly characterized and not yet cultured Acidobacteriota subgroup GP17, especially when phytate was added. Ammonia-oxidizing Nitrosomonas and nitrite-oxidizing Nitrospira were significantly suppressed in the presence of the AM fungus in the root-free compartment, especially upon addition of inorganic N. Co-occurrence network analyses revealed that microbial communities in the root-free compartment were complex and interconnected with more keystone species when AM fungus was present, especially when the root-free compartment was amended with phytate. CONCLUSION: Our study showed that the form of nutrients is an important driver of prokaryotic and eukaryotic community assembly in the AM fungal hyphosphere, despite the assumed presence of a stable and specific AM fungal hyphoplane microbiome. Predictable responses of specific microbial taxa will open the possibility of using them as co-inoculants with AM fungi, e.g., to improve crop performance.
Zobrazit více v PubMed
Amacker N., Gao Z., Hu J., Jousset A. L. C., Kowalchuk G. A., Geisen S. (2022). Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities. FEMS Microbiol. Ecol. 98:fiac057. doi: 10.1093/femsec/fiac057, PMID: PubMed DOI PMC
Artursson V., Finlay R. D., Jansson J. K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 8, 1–10. doi: 10.1111/j.1462-2920.2005.00942.x, PMID: PubMed DOI
Avrahami S., Liesack W., Conrad R. (2003). Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5, 691–705. doi: 10.1046/j.1462-2920.2003.00457.x, PMID: PubMed DOI
Bastian M., Heymann S., Jacomy M., (2009). Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Weblogs and Social Media, San Jose, California, USA.
Beeckman F., Motte H., Beeckman T. (2018). Nitrification in agricultural soils: impact, actors and mitigation. Curr. Opin. Biotechnol. 50, 166–173. doi: 10.1016/j.copbio.2018.01.014, PMID: PubMed DOI
Bonfante P., Anca I. A. (2009). Plants, mycorrhizal fungi, and bacteria: a network of interactions. Ann. Rev. Microbiol. 63, 363–383. doi: 10.1146/annurev.micro.091208.073504 PubMed DOI
Bowles T. M., Jackson L. E., Cavagnaro T. R. (2018). Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Glob. Chang. Biol. 24, e171–e182. doi: 10.1111/gcb.13884, PMID: PubMed DOI
Brundrett M. C., Tedersoo L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115. doi: 10.1111/nph.14976, PMID: PubMed DOI
Bukovská P., Bonkowski M., Konvalinková T., Beskid O., Hujslová M., Püschel D., et al. . (2018). Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers? Mycorrhiza 28:465. doi: 10.1007/s00572-018-0851-y, PMID: PubMed DOI
Bukovská P., Gryndler M., Gryndlerová H., Püschel D., Jansa J. (2016). Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of Ammonia oxidizers. Front. Microbiol. 7:711. doi: 10.3389/fmicb.2016.00711 PubMed DOI PMC
Bukovská P., Rozmoš M., Kotianová M., Gančarčíková K., Dudáš M., Hršelová H., et al. . (2021). Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. Front. Microbiol. 12:325. doi: 10.3389/fmicb.2021.574060 PubMed DOI PMC
Cavagnaro T. R., Barrios-Masias F. H., Jackson L. E. (2012). Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant Soil 353, 181–194. doi: 10.1007/s11104-011-1021-6 DOI
Cederlund H., Wessén E., Enwall K., Jones C. M., Juhanson J., Pell M., et al. . (2014). Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl. Soil Ecol. 84, 62–68. doi: 10.1016/j.apsoil.2014.06.003 DOI
Chai Y. N., Schachtman D. P. (2022). Root exudates impact plant performance under abiotic stress. Trends Plant Sci. 27, 80–91. doi: 10.1016/j.tplants.2021.08.003, PMID: PubMed DOI
Challacombe J. F., Hesse C. N., Bramer L. M., McCue L. A., Lipton M., Purvine S., et al. . (2019). Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics 20:976. doi: 10.1186/s12864-019-6358-x, PMID: PubMed DOI PMC
Chen Y.-L., Chen B.-D., Hu Y.-J., Li T., Zhang X., Hao Z.-P., et al. . (2013). Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia 56, 205–212. doi: 10.1016/j.pedobi.2013.07.003 DOI
Chen T., Hu R., Zheng Z., Yang J., Fan H., Deng X., et al. . (2021). Soil bacterial community in the multiple cropping system increased grain yield within 40 cultivation years. Front. Plant Sci. 12:804527. doi: 10.3389/fpls.2021.804527, PMID: PubMed DOI PMC
Cranenbrouck S., Voets L., Bivort C., Renard L., Strullu D.-G., Declerck S. (2005). “Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs” in in vitro culture of mycorrhizas. Soil biology. eds. Declerck S., Fortin J. A., Strullu D. G. (Berlin, Heidelberg: Springer; ).
Crawley M.J., (2012). The R book. John Wiley & Sons, United Kingdom.
Cruz-Paredes C., Svenningsen N. B., Nybroe O., Kjøller R., Frøslev T. G., Jakobsen I. (2019). Suppression of arbuscular mycorrhizal fungal activity in a diverse collection of non-cultivated soils. FEMS Microbiol. Ecol. 95:fiz020. doi: 10.1093/femsec/fiz020 PubMed DOI
de Chaves M. G., Silva G. G. Z., Rossetto R., Edwards R. A., Tsai S. M., Navarrete A. A. (2019). Acidobacteria subgroups and their metabolic potential for carbon degradation in sugarcane soil amended with vinasse and nitrogen fertilizers. Front. Microbiol. 10:1680. doi: 10.3389/fmicb.2019.01680, PMID: PubMed DOI PMC
Delavaux C. S., Smith-Ramesh L. M., Kuebbing S. E. (2017). Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98, 2111–2119. doi: 10.1002/ecy.1892, PMID: PubMed DOI
Deng Y., Jiang Y.-H., Yang Y., He Z., Luo F., Zhou J. (2012). Molecular ecological network analyses. BMC Bioinformat. 13:113. doi: 10.1186/1471-2105-13-113, PMID: PubMed DOI PMC
Dudáš M., Pjevac P., Kotianová M., Gančarčíková K., Rozmoš M., Hršelová H., et al. . (2022). Arbuscular mycorrhiza and nitrification: disentangling processes and players by using synthetic nitrification inhibitors. Appl. Environ. Microbiol. 88:e0136922. doi: 10.1128/aem.01369-22, PMID: PubMed DOI PMC
Emmett B. D., Levesque-Tremblay V., Harrison M. J. (2021). Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 15, 2276–2288. doi: 10.1038/s41396-021-00920-2, PMID: PubMed DOI PMC
Faghihinia M., Jansa J. (2023). Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: a triple (13 C, 15 N and 33 P) labeling study. Front. Plant Sci. 13:1047270. doi: 10.3389/fpls.2022.1047270 PubMed DOI PMC
Faghihinia M., Jansa J., Halverson L. J., Staddon P. L. (2022). Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. Biol. Fertil. Soils 59, 17–34. doi: 10.1007/s00374-022-01683-4 DOI
Faghihinia M., Zou Y., Bai Y., Pourbakhtiar A., Marrs R., Staddon P. L. (2023). Long-term grazing intensity impacts belowground carbon allocation and mycorrhizas revealed by 13CO2 pulse labeling. Rangel. Ecol. Manag. 86, 64–72. doi: 10.1016/j.rama.2022.11.001 DOI
Faghihinia M., Zou Y., Chen Z., Bai Y., Li W., Marrs R., et al. . (2020). The response of grassland mycorrhizal fungal abundance to a range of long-term grazing intensities. Rhizosphere 13:100178. doi: 10.1016/j.rhisph.2019.100178 DOI
Fierer N., Lauber C. L., Ramirez K. S., Zaneveld J., Bradford M. A., Knight R. (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017. doi: 10.1038/ismej.2011.159, PMID: PubMed DOI PMC
Gahan J., Schmalenberger A. (2015). Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Appl. Soil Ecol. 89, 113–121. doi: 10.1016/j.apsoil.2014.12.008 DOI
Gao X., Guo H., Zhang Q., Guo H., Zhang L., Zhang C., et al. . (2020). Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci. Rep. 10:2084. doi: 10.1038/s41598-020-59180-3, PMID: PubMed DOI PMC
Gao D., Pan X., Khashi U., Rahman M., Zhou X., Wu F. (2021). Common mycorrhizal networks benefit to the asymmetric interspecific facilitation via K exchange in an agricultural intercropping system. Biol. Fertil. Soils 57, 959–971. doi: 10.1007/s00374-021-01561-5 DOI
Geisen S., Mitchell E. A. D., Adl S., Bonkowski M., Dunthorn M., Ekelund F., et al. . (2018). Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323. doi: 10.1093/femsre/fuy006, PMID: PubMed DOI
Govindarajulu M., Pfeffer P. E., Jin H., Abubaker J., Douds D. D., Allen J. W., et al. . (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819–823. doi: 10.1038/nature03610 PubMed DOI
Gryndler M., Hršelová H., Soukupová L., Streiblová E., Valda S., Borovička J., et al. . (2011). Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers. FEMS Microbiol. Lett. 318, 84–91. doi: 10.1111/j.1574-6968.2011.02243.x, PMID: PubMed DOI
Gryndler M., Šmilauer P., Püschel D., Bukovská P., Hršelová H., Hujslová M., et al. . (2018). Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28, 435–450. doi: 10.1007/s00572-018-0844-x, PMID: PubMed DOI
Guo S., Xiong W., Xu H., Hang X., Liu H., Xun W., et al. . (2018). Continuous application of different fertilizers induces distinct bulk and rhizosphere soil protist communities. Eur. J. Soil Biol. 88, 8–14. doi: 10.1016/j.ejsobi.2018.05.007 DOI
Hodge A., Fitter A. H. (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl. Acad. Sci. U. S. A. 107, 13754–13759. doi: 10.1073/pnas.1005874107, PMID: PubMed DOI PMC
Hodge A., Storer K. (2015). Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386, 1–19. doi: 10.1007/s11104-014-2162-1 DOI
Hui J., An X., Li Z., Neuhäuser B., Ludewig U., Wu X., et al. . (2022). The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. Plant Cell 34, 4066–4087. doi: 10.1093/plcell/koac225, PMID: PubMed DOI PMC
Jakobsen I., Hammer E.C., (2015). Nutrient dynamics in arbuscular mycorrhizal networks, In: Horton T. R. (Ed.), Mycorrhizal networks. Ecological studies (analysis and synthesis). Springer, Dordrecht.
Jansa J., Forczek S. T., Rozmoš M., Püschel D., Bukovská P., Hršelová H. (2019). Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions. Chem. Biol. Technol. Agric. 6:10. doi: 10.1186/s40538-019-0147-2 DOI
Jansa J., Hodge A. (2021). Swimming, gliding, or hyphal riding? On microbial migration along the arbuscular mycorrhizal hyphal highway and functional consequences thereof. New Phytol. 230, 14–16. doi: 10.1111/nph.17244 PubMed DOI
Jansa J., Šmilauer P., Borovička J., Hršelová H., Forczek S. T., Slámová K., et al. . (2020). Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza 30, 63–77. doi: 10.1007/s00572-020-00937-z, PMID: PubMed DOI
Jeffries P., Gianinazzi S., Perotto S., Turnau K., Barea J.-M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 37, 1–16. doi: 10.1007/s00374-002-0546-5 DOI
Jiang F., Zhang L., Zhou J. C., George T. S., Feng G. (2021). Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230, 304–315. doi: 10.1111/nph.17081, PMID: PubMed DOI
Johansen A., Jakobsen I., Jensen E. S. (1993). Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol. Fertil. Soils 16, 66–70. doi: 10.1007/BF00336518 DOI
Kikuchi Y., Hijikata N., Ohtomo R., Handa Y., Kawaguchi M., Saito K., et al. . (2016). Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytol. 211, 1202–1208. doi: 10.1111/nph.14016, PMID: PubMed DOI
Koller R., Scheu S., Bonkowski M., Robin C. (2013). Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. Soil Biol. Biochem. 65, 204–210. doi: 10.1016/j.soilbio.2013.05.020 DOI
Koske R., Gemma J. (1989). A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92, 486–488. doi: 10.1016/S0953-7562(89)80195-9 DOI
Krashevska V., Sandmann D., Maraun M., Scheu S. (2014). Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages. ISME J. 8, 1126–1134. doi: 10.1038/ismej.2013.209, PMID: PubMed DOI PMC
Kurtz Z. D., Müller C. L., Miraldi E. R., Littman D. R., Blaser M. J., Bonneau R. A. (2015). Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11:e1004226. doi: 10.1371/journal.pcbi.1004226 PubMed DOI PMC
Lanfranco L., Fiorilli V., Venice F., Bonfante P. (2017). Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J. Exp. Bot. 69, 2175–2188. doi: 10.1093/jxb/erx432 PubMed DOI
Lanfranco L., Guether M., Bonfante P. (2011). “Arbuscular mycorrhizas and N acquisition by plants” in Ecological aspects of nitrogen metabolism in plants. eds. Polacco J. C., Todd C. D. (Hoboken, NJ: John Wiley & Sons, Ltd; ).
Li F., Chen L., Zhang J., Yin J., Huang S. (2017). Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 8:187. doi: 10.3389/fmicb.2017.00187 PubMed DOI PMC
Li C., Li H., Hoffland E., Zhang F., Zhang J., Kuyper T. W. (2022). Common mycorrhizal networks asymmetrically improve chickpea N and P acquisition and cause overyielding by a millet/chickpea mixture. Plant Soil 472, 279–293. doi: 10.1007/s11104-021-05232-0 DOI
Liu C., Cui Y., Li X., Yao M. (2020). microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97:fiaa255. doi: 10.1093/femsec/fiaa255 PubMed DOI
Liu C., Li X., Mansoldo F. R. P., An J., Kou Y., Zhang X., et al. . (2022). Microbial habitat specificity largely affects microbial co-occurrence patterns and functional profiles in wetland soils. Geoderma 418:115866. doi: 10.1016/j.geoderma.2022.115866 DOI
López-Mondéjar R., Brabcová V., Štursová M., Davidová A., Jansa J., Cajthaml T., et al. . (2018). Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 12, 1768–1778. doi: 10.1038/s41396-018-0084-2, PMID: PubMed DOI PMC
Lueders T., Kindler R., Miltner A., Friedrich M. W., Kaestner M. (2006). Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl. Environ. Microbiol. 72, 5342–5348. doi: 10.1128/AEM.00400-06, PMID: PubMed DOI PMC
Luthfiana N., Inamura N., Tantriani S., Saito K T., Oikawa A., Chen W., et al. . (2021). Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza 31, 403–412. doi: 10.1007/s00572-020-01016-z, PMID: PubMed DOI
Mariadassou M., Pichon S., Ebert D. (2015). Microbial ecosystems are dominated by specialist taxa. Ecol. Lett. 18, 974–982. doi: 10.1111/ele.12478 PubMed DOI
McGonigle T., Miller M., Evans D., Fairchild G., Swan J. (1990). A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol. 115, 495–501. doi: 10.1111/j.1469-8137.1990.tb00476.x, PMID: PubMed DOI
Navarrete A. A., Venturini A. M., Meyer K. M., Klein A. M., Tiedje J. M., Bohannan B. J., et al. . (2015). Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the western Brazilian Amazon. Front. Microbiol. 6:1443. doi: 10.3389/fmicb.2015.01443 PubMed DOI PMC
Ngwene B., Gabriel E., George E. (2013). Influence of different mineral nitrogen sources (NO3−-N vs. NH4+-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices–cowpea symbiosis. Mycorrhiza 23, 107–117. doi: 10.1007/s00572-012-0453-z, PMID: PubMed DOI PMC
Nicol G. W., Leininger S., Schleper C., Prosser J. I. (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10, 2966–2978. doi: 10.1111/j.1462-2920.2008.01701.x, PMID: PubMed DOI
Nuccio E. E., Blazewicz S. J., Lafler M., Campbell A. N., Kakouridis A., Kimbrel J. A., et al. . (2022). HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. Microbiome 10:199. doi: 10.1186/s40168-022-01391-z, PMID: PubMed DOI PMC
Nuccio E. E., Hodge A., Pett-Ridge J., Herman D. J., Weber P. K., Firestone M. K. (2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ. Microbiol. 15, 1870–1881. doi: 10.1111/1462-2920.12081, PMID: PubMed DOI
Ohno T., Zibilske L. M. (1991). Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895. doi: 10.2136/sssaj1991.03615995005500030046x DOI
Pii Y., Mimmo T., Tomasi N., Terzano R., Cesco S., Crecchio C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 51, 403–415. doi: 10.1007/s00374-015-0996-1 DOI
Püschel D., Bitterlich M., Rydlová J., Jansa J. (2021). Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biol. Biochem. 157:108243. doi: 10.1016/j.soilbio.2021.108243 DOI
Püschel D., Janoušková M., Voříšková A., Gryndlerová H., Vosátka M., Jansa J. (2017). Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front. Plant Sci. 8:390. doi: 10.3389/fpls.2017.00390 PubMed DOI PMC
Qin H., Brookes P. C., Xu J. M. (2016). Arbuscular mycorrhizal fungal hyphae Alter soil bacterial community and enhance polychlorinated biphenyls dissipation. Front. Microbiol. 7:939. doi: 10.3389/fmicb.2016.00939 PubMed DOI PMC
Qiu Q., Bender S. F., Mgelwa A. S., Hu Y. (2022). Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: a meta-analysis. Sci. Total Environ. 807:150857. doi: 10.1016/j.scitotenv.2021.150857, PMID: PubMed DOI
R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available at: https://www.R-project.org
Read D. J., Perez-Moreno J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol. 157, 475–492. doi: 10.1046/j.1469-8137.2003.00704.x, PMID: PubMed DOI
Řezanka T., Lukavský J., Rozmoš M., Nedbalová L., Jansa J. (2022). Separation of triacylglycerols containing positional isomers of hexadecenoic acids by enantiomeric liquid chromatography-mass spectrometry. J. Chromatogr. B 1208:123401. doi: 10.1016/j.jchromb.2022.123401, PMID: PubMed DOI
Rillig M. C. (2004). Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Lett. 7, 740–754. doi: 10.1111/j.1461-0248.2004.00620.x DOI
Rozmoš M., Bukovská P., Hršelová H., Kotianová M., Dudáš M., Gančarčíková K., et al. . (2022). Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME J. 16, 676–685. doi: 10.1038/s41396-021-01112-8, PMID: PubMed DOI PMC
Ryan M. H., Tibbett M., Edmonds-Tibbett T., Suriyagoda L. D. B., Lambers H., Cawthray G. R., et al. . (2012). Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant Cell Environ. 35, 2170–2180. doi: 10.1111/j.1365-3040.2012.02547.x, PMID: PubMed DOI
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al. . (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. doi: 10.1186/gb-2011-12-6-r60, PMID: PubMed DOI PMC
Selosse M.-A., Richard F., He X., Simard S. W. (2006). Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628. doi: 10.1016/j.tree.2006.07.003, PMID: PubMed DOI
Sharma G., Subramanian S. (2017). Unravelling the complete genome of Archangium gephyra DSM 2261T and evolutionary insights into Myxobacterial Chitinases. Genome Biol. Evol. 9, 1304–1311. doi: 10.1093/gbe/evx066, PMID: PubMed DOI PMC
Smith S.E., Read D.J., (2008). Mycorrhizal symbiosis. Academic press, San Diego, CA.
Smith S. E., Smith F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann. Rev. Plant Biol. 62, 227–250. doi: 10.1146/annurev-arplant-042110-103846, PMID: PubMed DOI
Stempfhuber B., Engel M., Fischer D., Neskovic-Prit G., Wubet T., Schöning I., et al. . (2015). pH as a driver for ammonia-oxidizing archaea in forest soils. Microb. Ecol. 69, 879–883. doi: 10.1007/s00248-014-0548-5, PMID: PubMed DOI
Storer K., Coggan A., Ineson P., Hodge A. (2018). Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol. 220, 1285–1295. doi: 10.1111/nph.14931, PMID: PubMed DOI PMC
Svenningsen N. B., Watts-Williams S. J., Joner E. J., Battini F., Efthymiou A., Cruz-Paredes C., et al. . (2018). Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 12, 1296–1307. doi: 10.1038/s41396-018-0059-3, PMID: PubMed DOI PMC
Teutscherova N., Vazquez E., Arango J., Arevalo A., Benito M., Pulleman M. (2019). Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application. Geoderma 338, 493–501. doi: 10.1016/j.geoderma.2018.09.023 DOI
Thion C. E., Poirel J. D., Cornulier T., De Vries F. T., Bardgett R. D., Prosser J. I. (2016). Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol. Ecol. 92:fiw091. doi: 10.1093/femsec/fiw091, PMID: PubMed DOI
Thonar C., Erb A., Jansa J. (2012). Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Resour. 12, 219–232. doi: 10.1111/j.1755-0998.2011.03086.x PubMed DOI
Tisserant E., Malbreil M., Kuo A., Kohler A., Symeonidi A., Balestrini R., et al. . (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. U. S. A. 110, 20117–20122. doi: 10.1073/pnas.1313452110, PMID: PubMed DOI PMC
van der Heijden M. G. A., Bardgett R. D., Van Straalen N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310. doi: 10.1111/j.1461-0248.2007.01139.x, PMID: PubMed DOI
Veresoglou S. D., Chen B., Rillig M. C. (2012). Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46, 53–62. doi: 10.1016/j.soilbio.2011.11.018 DOI
Veresoglou S. D., Verbruggen E., Makarova O., Mansour I., Sen R., Rillig M. C. (2019). Arbuscular mycorrhizal Fungi Alter the community structure of ammonia oxidizers at high fertility via competition for soil NH4. Microb. Ecol. 78, 147–158. doi: 10.1007/s00248-018-1281-2, PMID: PubMed DOI
Verhagen F. J., Laanbroek H. J. (1991). Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Appl. Environ. Microbiol. 57, 3255–3263. doi: 10.1128/aem.57.11.3255-3263.1991, PMID: PubMed DOI PMC
Větrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34, 2292–2294. doi: 10.1093/bioinformatics/bty071, PMID: PubMed DOI PMC
Wang F., Kertesz M. A., Feng G. (2019). Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover. Mycorrhiza 29, 351–362. doi: 10.1007/s00572-019-00896-0, PMID: PubMed DOI
Wang L., Zhang L., George T. S., Feng G. (2022). A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization. New Phytol. 238, 859–873. doi: 10.1111/nph.18642, PMID: PubMed DOI
Wattenburger C. J., Gutknecht J., Zhang Q., Brutnell T., Hofmockel K., Halverson L. (2020). The rhizosphere and cropping system, but not arbuscular mycorrhizae, affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils. Appl. Soil Ecol. 151:103540. doi: 10.1016/j.apsoil.2020.103540 DOI
White H., Macdonald G. M. (1980). Some large-sample tests for nonnormality in the linear regression model. J. Am. Stat. Assoc. 75, 16–28. doi: 10.1080/01621459.1980.10477415 DOI
Xu Q., Ling N., Chen H., Duan Y., Wang S., Shen Q., et al. . (2020). Long-term chemical-only fertilization induces a diversity decline and deep selection on the soil bacteria. mSystems 5:e00337-20. doi: 10.1128/mSystems.00337-20 PubMed DOI PMC
Yurgel S. N., Nadeem M., Cheema M. (2022). Microbial consortium associated with crustacean shells composting. Microorganisms 10:1033. doi: 10.3390/microorganisms10051033, PMID: PubMed DOI PMC
Zai X.-M., Fan J.-J., Hao Z.-P., Liu X.-M., Zhang W.-X. (2021). Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment. Sci. Rep. 11:5761. doi: 10.1038/s41598-021-84284-9, PMID: PubMed DOI PMC
Zhang L., Fan J. Q., Ding X. D., He X. H., Zhang F. S., Feng G. (2014). Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol. Biochem. 74, 177–183. doi: 10.1016/j.soilbio.2014.03.004 DOI
Zhang L., Shi N., Fan J. Q., Wang F., George T. S., Feng G. (2018). Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environ. Microbiol. 20, 2639–2651. doi: 10.1111/1462-2920.14289, PMID: PubMed DOI
Zhang L., Zhou J., George T. S., Limpens E., Feng G. (2022). Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends Plant Sci. 27, 402–411. doi: 10.1016/j.tplants.2021.10.008, PMID: PubMed DOI
Zhao Z.-B., He J.-Z., Geisen S., Han L.-L., Wang J.-T., Shen J.-P., et al. . (2019). Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 7:33. doi: 10.1186/s40168-019-0647-0, PMID: PubMed DOI PMC
Zhou J. C., Chai X. F., Zhang L., George T. S., Wang F., Feng G. (2020). Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems 5:e00929-20. doi: 10.1128/mSystems.00929-20 PubMed DOI PMC