nutrient mobilization
Dotaz
Zobrazit nápovědu
Mounting an immune response is a nutritionally demanding process that requires the systemic redistribution of energy stores towards the immune system. This is facilitated by cytokine-induced insulin resistance, which simultaneously promotes the mobilization of lipids and carbohydrates while limiting their consumption in immune-unrelated processes, such as development, growth, and reproduction. However, this adaptation also restricts the availability of nutrients to vital organs, which must then be sustained by alternative fuels. Here, we employed an experimental model of severe bacterial infection in Drosophila melanogaster to investigate whether ketogenesis may represent a metabolic adaptation for overcoming periods of nutritional scarcity during the immune response. We found that the immune response to severe bacterial infection is accompained by increased ketogenesis in the fat body and macrophages, leading to elevated levels of β-hydroxybutyrate in circulation. Although this metabolic adaptation is essential for survival during infection, it is not required for the elimination of the pathogen itself. Instead, ketone bodies predominately serve as an energy source for the brain neurons during this period of nutrient scarcity.
- MeSH
- bakteriální infekce metabolismus imunologie MeSH
- Drosophila melanogaster * metabolismus mikrobiologie MeSH
- energetický metabolismus fyziologie MeSH
- ketolátky * metabolismus MeSH
- kyselina 3-hydroxymáselná metabolismus MeSH
- makrofágy metabolismus MeSH
- mozek * metabolismus MeSH
- neurony metabolismus MeSH
- tukové těleso metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We explored the potential of a fungal strain Aspergillus costaricensis KS1 for modulating growth and nutrient mobilization in rice. At laboratory conditions, there was a decline in pH of the medium on inoculation with the strain and the production of citric acid was observed under broth conditions. Similarly, there was higher solubilization of tricalcium phosphate and siderophore production in liquid medium on inoculation with the strain. The effect of inoculation of KS1 was studied in rice and higher growth and yield were observed on inoculation compared to control. The content of phosphorus and iron in stem and roots of KS1 inoculated plants was higher in comparison with uninoculated control. There was also increased availability of phosphorus and iron content in soil grown with KS1 inoculated plants. In addition, inoculation with strain resulted in a higher content of volatile organic compounds such as linoleic acid, linolenic acid, and ethyl isoallocholate in stem of rice. A. costaricensis KS1 can be used for improving phosphorus and iron nutrition and impart tolerance against stresses in rice.
- MeSH
- Aspergillus * metabolismus růst a vývoj MeSH
- fosfor * metabolismus analýza MeSH
- fosforečnany vápenaté metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kořeny rostlin mikrobiologie metabolismus MeSH
- kyselina citronová metabolismus MeSH
- půdní mikrobiologie MeSH
- rýže (rod) * mikrobiologie metabolismus růst a vývoj MeSH
- siderofory * metabolismus MeSH
- stonky rostlin mikrobiologie metabolismus chemie MeSH
- těkavé organické sloučeniny * metabolismus analýza MeSH
- železo * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The immune response is an energy-demanding process that must be coordinated with systemic metabolic changes redirecting nutrients from stores to the immune system. Although this interplay is fundamental for the function of the immune system, the underlying mechanisms remain elusive. Our data show that the pro-inflammatory polarization of Drosophila macrophages is coupled to the production of the insulin antagonist ImpL2 through the activity of the transcription factor HIF1α. ImpL2 production, reflecting nutritional demands of activated macrophages, subsequently impairs insulin signaling in the fat body, thereby triggering FOXO-driven mobilization of lipoproteins. This metabolic adaptation is fundamental for the function of the immune system and an individual's resistance to infection. We demonstrated that analogically to Drosophila, mammalian immune-activated macrophages produce ImpL2 homolog IGFBP7 in a HIF1α-dependent manner and that enhanced IGFBP7 production by these cells induces mobilization of lipoproteins from hepatocytes. Hence, the production of ImpL2/IGFBP7 by macrophages represents an evolutionarily conserved mechanism by which macrophages alleviate insulin signaling in the central metabolic organ to secure nutrients necessary for their function upon bacterial infection.
- MeSH
- antagonisté inzulinu metabolismus farmakologie MeSH
- bakteriální infekce * metabolismus MeSH
- Drosophila metabolismus MeSH
- inzulin metabolismus MeSH
- inzulinová rezistence * MeSH
- makrofágy metabolismus MeSH
- proteiny Drosophily * metabolismus MeSH
- proteiny vázající IGF metabolismus MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Alterations in the balance between skeletogenesis and adipogenesis is a pathogenic feature in multiple skeletal disorders. Clinically, enhanced bone marrow adiposity in bones impairs mobility and increases fracture risk, reducing the quality of life of patients. The molecular mechanism that underlies the balance between skeletogenesis and adipogenesis is not completely understood but alterations in skeletal progenitor cells' differentiation pathway plays a key role. We recently demonstrated that parathyroid hormone (PTH)/PTH-related peptide (PTHrP) control the levels of DEPTOR, an inhibitor of the mechanistic target of rapamycin (mTOR), and that DEPTOR levels are altered in different skeletal diseases. Here, we show that mutations in the PTH receptor-1 (PTH1R) alter the differentiation of skeletal progenitors in two different skeletal genetic disorders and lead to accumulation of fat or cartilage in bones. Mechanistically, DEPTOR controls the subcellular localization of TAZ (transcriptional co-activator with a PDZ-binding domain), a transcriptional regulator that governs skeletal stem cells differentiation into either bone and fat. We show that DEPTOR regulation of TAZ localization is achieved through the control of Dishevelled2 (DVL2) phosphorylation. Depending on nutrient availability, DEPTOR directly interacts with PTH1R to regulate PTH/PTHrP signaling or it forms a complex with TAZ, to prevent its translocation to the nucleus and therefore inhibit its transcriptional activity. Our data point DEPTOR as a key molecule in skeletal progenitor differentiation; its dysregulation under pathologic conditions results in aberrant bone/fat balance.
- Publikační typ
- časopisecké články MeSH
Insulin resistance and cachexia represent severe metabolic syndromes accompanying a variety of human pathological states, from life-threatening cancer and sepsis to chronic inflammatory states, such as obesity and autoimmune disorders. Although the origin of these metabolic syndromes has not been fully comprehended yet, a growing body of evidence indicates their possible interconnection with the acute and chronic activation of an innate immune response. Current progress in insect immuno-metabolic research reveals that the induction of insulin resistance might represent an adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin resistance is induced by signaling factors released by bactericidal macrophages as a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic adaptation enables them to combat the invading pathogens efficiently but also makes them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted upon macrophage activation to provide them with nutrients and thus support the immune function. That anticipates the involvement of macrophage-derived systemic factors mediating the inter-organ signaling between macrophages and central energy-storing organs. Although it is crucial to coordinate the macrophage cellular metabolism with systemic metabolic changes during the acute phase of bacterial infection, the action of macrophage-derived factors may become maladaptive if chronic or in case of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked by macrophage-derived signaling factors represents an adaptive mechanism for the mobilization of sources and their preferential delivery toward the activated immune system. We consider here the validity of the presented model for mammals and human medicine. The adoption of aerobic glycolysis by bactericidal macrophages as well as the induction of insulin resistance by macrophage-derived factors are conserved between insects and mammals. Chronic insulin resistance is at the base of many human metabolically conditioned diseases such as non-alcoholic steatohepatitis, atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological relevance of cytokine-induced insulin resistance may help to develop a suitable strategy for treating these frequent diseases.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
- MeSH
- biodiverzita MeSH
- ekologie MeSH
- ekosystém * MeSH
- přístup k informacím * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
A woody-biochar was added to waste biomass during a composting process. The resulting compost-char was amended to a metal contaminated soil and two plant species, L. perenne and E. sativa, were grown in a pot experiment to determine 1) plant survival and stress factors, 2) uptake of metals to plants and, 3) chemical characteristics of sampled soils and pore waters. Compost supplemented with biochar after the composting process were also tested, as well as a commercially available compost, for comparison. Co-composting with biochar hastened the composting process, resulting in a composite material of reduced odour, increased maturity, circum-neutral pH and increased moisture retention than compost (increase by 3% of easily removable water content). When amended to the soil, CaCl2 extractable and pore water metals s were reduced by all compost treatments with little influence of biochar addition at any tested dose. Plant growth success was promoted furthest by the addition of co-composted biochar to the test soil, especially in the case of E. sativa. For both tested plant species significant reductions in plant metal concentrations (e.g. 8-times for Zn) were achieved, against the control soil, by compost, regardless of biochar addition. The results of this study demonstrate that the addition of biochar into the composting process can hasten the stability of the resulting compost-char, with more favourable characteristics as a soil amendment/improver than compost alone. This appears achievable whilst also maintaining the provision of available nutrients to soils and the reduction of metal mobility, and improved conditions for plant establishment.
- MeSH
- biodegradace MeSH
- biomasa MeSH
- Brassicaceae chemie růst a vývoj MeSH
- dřevěné a živočišné uhlí chemie MeSH
- dřevo chemie MeSH
- jílek chemie růst a vývoj MeSH
- kompostování * MeSH
- kovy analýza MeSH
- látky znečišťující půdu analýza MeSH
- půda chemie MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- buněčná stěna chemie metabolismus MeSH
- cytokininy metabolismus MeSH
- endozomy metabolismus MeSH
- geneticky modifikované rostliny metabolismus MeSH
- Golgiho aparát metabolismus MeSH
- kořeny rostlin metabolismus mikrobiologie MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- odolnost vůči nemocem genetika MeSH
- Plasmodiophorida patogenita MeSH
- proteiny huseníčku genetika metabolismus MeSH
- půda MeSH
- regulace genové exprese u rostlin genetika MeSH
- regulátory růstu rostlin metabolismus MeSH
- sekreční dráha genetika MeSH
- stanovení celkové genové exprese MeSH
- transkriptom genetika MeSH
- vezikulární transportní proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We evaluated whether changes in fine root non-structural carbohydrate reserves of Fagus sylvatica and Pinus sylvestris trees influence potential enzymatic activities of their ectomycorrhizal symbionts from winter towards spring reactivation, and whether these changes influence potential soil enzymatic activities. We analyzed sugar and starch concentrations in the fine roots of Fagus sylvatica and Pinus sylvestris and potential activities of ß-glucosidase, ß-xylosidase, and cellobiohydrolase (as proxies for carbon-degrading enzymes) as well as leucine aminopeptidase and chitinase (as proxies for nitrogen-degrading enzymes) of their dominant ectomycorrhizal symbionts as well as in the soil. Sugar concentrations in the fine roots were significantly positively correlated with enzymatic activities of the ectomycorrhizal symbionts. In Pinus sylvestris, both carbon- and nitrogen-degrading enzyme activities showed significant positive correlations with fine root sugar concentrations. In Fagus sylvatica, fine root sugar concentrations were explicitly positively correlated with the activity of nitrogen-degrading enzymes. The chitinase activity in the soil was found to be strongly positively correlated with the enzymatic activity of the ectomycorrhizal symbionts as well as with fine root sugar concentrations. Fine root carbohydrate concentrations of Fagus sylvatica and Pinus sylvestris trees and enzymatic activities of their associated ectomycorrhizal fungi are connected. The specific nutrient demand of the tree species during spring reactivation may affect ectomycorrhizal enzymatic activity via carbon mobilization in the fine roots of Fagus sylvatica and Pinus sylvestris. Moreover, our results suggest that trees indirectly contribute to the degradation of fungal necromass by stimulating ectomycorrhizal chitinase activity in the soil.
- MeSH
- borovice lesní * MeSH
- buk (rod) * MeSH
- kořeny rostlin MeSH
- mykorhiza * MeSH
- sacharidy MeSH
- Publikační typ
- časopisecké články MeSH
Interactions with microorganisms might enable house dust mites (HDMs) to derive nutrients from difficult-to-digest structural proteins and to flourish in human houses. We tested this hypothesis by investigating the effects of changes in the mite culture growth and population of two HDM species on HDM microbiome composition and fitness. Growing cultures of laboratory and industrial allergen-producing populations of Dermatophagoides farinae (DFL and DFT, respectively) and Dermatophagoides pteronyssinus (DPL and DPT, respectively) were sampled at four time points. The symbiotic microorganisms of the mites were characterized by DNA barcode sequencing and quantified by qPCR using universal/specific primers. The population growth of mites and nutrient contents of mite bodies were measured and correlated with the changes in bacteria in the HDM microbiome. The results showed that both the population and culture age significantly influenced the microbiome profiles. Cardinium formed 93% and 32% of the total sequences of the DFL and DFT bacterial microbiomes, respectively, but this bacterial species was less abundant in the DPL and DPT microbiomes. Staphylococcus abundance was positively correlated with increased glycogen contents in the bodies of mites, and increased abundances of Aspergillus, Candida, and Kocuria were correlated with increased lipid contents in the bodies of mites. The xerophilic fungus Wallemia accounted for 39% of the fungal sequences in the DPL microbiome, but its abundance was low in the DPT, DFL, and DFT microbiomes. With respect to the mite culture age, we made three important observations: the mite population growth from young cultures was 5-8-fold higher than that from old cultures; specimens from old cultures had greater abundances of fungi and bacteria in their bodies; and yeasts predominated in the gut contents of specimens from young cultures, whereas filamentous mycelium prevailed in specimens from old cultures. Our results are consistent with the hypothesis that mites derive nutrients through associations with microorganisms.
- MeSH
- Bacteria * klasifikace MeSH
- bakteriální RNA analýza MeSH
- druhová specificita MeSH
- fungální RNA analýza MeSH
- houby * klasifikace MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- mikrobiota * MeSH
- populační dynamika MeSH
- Pyroglyphidae mikrobiologie fyziologie MeSH
- RNA ribozomální 16S analýza MeSH
- RNA ribozomální 18S analýza MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH