Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation

. 2016 ; 7 () : 782. [epub] 20160606

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27375642

Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases-on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore, these subjects deserve particular attention in the future.

Zobrazit více v PubMed

Augé R. M., Moore J. L., Cho K. H., Stutz J. C., Sylvia D. M., Al-Agely A. K., et al. . (2003). Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J. Plant Physiol. 160, 1147–1156. 10.1078/0176-1617-01154 PubMed DOI

Augé R. M., Toler H. D., Saxton A. M. (2014). Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front. Plant Sci. 5:562. 10.3389/fpls.2014.00562 PubMed DOI PMC

Bago B., Pfeffer P. E., Shachar-Hill Y. (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124, 949–957. 10.1104/pp.124.3.949 PubMed DOI PMC

Bereau M., Barigah T. S., Louisanna E., Garbaye J. (2000). Effects of endomycorrhizal development and light regimes on the growth of Dicorynia guianensis Amshoff seedlings. Ann. For. Sci. 57, 725–733. 10.1051/forest:2000153 DOI

Bethlenfalvay G. J., Pacovsky R. S. (1983). Light effects in mycorrhizal soybeans. Plant Physiol. 73, 969–972. 10.1104/pp.73.4.969 PubMed DOI PMC

Borges R. G., Chaney W. R. (1993). Solar irradiance and the development of endomycorrhizal green ash seedlings. Tree Physiol. 13, 227–238. 10.1093/treephys/13.3.227 PubMed DOI

Bravo A., York T., Pumplin N., Mueller L. A., Harrison M. J. (2016). Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat. Plants 2:15208 10.1038/nplants.2015.208 PubMed DOI

Calderón F. J., Schultz D. J., Paul E. A. (2012). Carbon allocation, belowground transfers, and lipid turnover in a plant-microbial association. Soil Sci. Soc. Am. J. 76, 1614–1623. 10.2136/sssaj2011.0440 DOI

Cardoso I. M., Boddington C. L., Janssen B. H., Oenema O., Kuyper T. W. (2006). Differential access to phosphorus pools of an oxisol by mycorrhizal and nonmycorrhizal maize. Commun. Soil Sci. Plant Anal. 37, 1537–1551. 10.1080/00103620600710074 DOI

Casieri L., Gallardo K., Wipf D. (2012). Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235, 1431–1447. 10.1007/s00425-012-1645-7 PubMed DOI

Daft M. J., El-Giahmi A. A. (1978). Effect of arbuscular mycorrhiza on plant growth.8. Effects of defoliation and light on selected hosts. New Phytol. 80, 365–372. 10.1111/j.1469-8137.1978.tb01570.x DOI

Dickson S. (2004). The Arum-Paris continuum of mycorrhizal symbioses. New Phytol. 163, 187–200. 10.1111/j.1469-8137.2004.01095.x PubMed DOI

Doidy J., van Tuinen D., Lamotte O., Corneillat M., Alcaraz G., Wipf D. (2012). The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Mol. Plant 5, 1346–1358. 10.1093/mp/sss079 PubMed DOI

Drigo B., Pijl A. S., Duyts H., Kielak A., Gamper H. A., Houtekamer M. J., et al. . (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. U.S.A. 107, 10938–10942. 10.1073/pnas.0912421107 PubMed DOI PMC

Euliss A. C., Fisk M. C., McCleneghan S. C., Neufeld H. S. (2007). Allocation and morphological responses to resource manipulations are unlikely to mitigate shade intolerance in Houstonia montana, a rare southern Appalachian herb. Can. J. Bot. 85, 976–985. 10.1139/B07-104 DOI

Ezawa T., Smith S. E., Smith F. A. (2002). P metabolism and transport in AM fungi. Plant Soil 244, 221–230. 10.1023/A:1020258325010 DOI

Fellbaum C. R., Gachomo E. W., Beesetty Y., Choudhari S., Strahan G. D., Pfeffer P. E., et al. . (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U.S.A. 109, 2666–2671. 10.1073/pnas.1118650109 PubMed DOI PMC

Fellbaum C. R., Mensah J. A., Cloos A. J., Strahan G. E., Pfeffer P. E., Kiers E. T., et al. . (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 203, 646–656. 10.1111/nph.12827 PubMed DOI

Franken P. (2010). Molecular-physiological aspects of the AM symbiosis post penetration, in Arbuscular Mycorrhizas: Physiology and Function, eds Koltai H., Kapulnik Y. (Dordrecht: Springer; ), 93–116.

Furlan V., Fortin J. A. (1977). Effects of light intensity on formation of vesicular-arbuscular endomycorrhizas on Allium cepa by Gigaspora calospora. New Phytol. 79, 335–340. 10.1111/j.1469-8137.1977.tb02213.x DOI

Füzy A., Bothe H., Molnar E., Biró B. (2014). Mycorrhizal symbiosis effects on growth of chalk false-brome (Brachypodium pinnatum) are dependent on the environmental light regime. J. Plant Physiol. 171, 1–6. 10.1016/j.jplph.2013.11.002 PubMed DOI

Gamage H. K., Singhakumara B. M. P., Ashton M. S. (2004). Effects of light and fertilization on arbuscular mycorrhizal colonization and growth of tropical rain-forest Syzygium tree seedlings. J. Trop. Ecol. 20, 525–534. 10.1017/S0266467404001592 DOI

Gehring C. A. (2003). Growth responses to arbuscular mycorrhizae by rain forest seedlings vary with light intensity and tree species. Plant Ecol. 167, 127–139. 10.1023/A:1023989610773 DOI

Graham J. H., Leonard R. T., Menge J. A. (1982). Interaction of light intensity and soil temperature with phosphorus inhibition of vesicular arbuscular mycorrhiza formation. New Phytol. 91, 683–690. 10.1111/j.1469-8137.1982.tb03347.x DOI

Grimoldi A. A., Kavanová M., Lattanzi F. A., Schaufele R., Schnyder H. (2006). Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange. New Phytol. 172, 544–553. 10.1111/j.1469-8137.2006.01853.x PubMed DOI

Grman E. (2012). Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93, 711–718. 10.1890/11-1358.1 PubMed DOI

Grman E., Robinson T. M. P., Klausmeier C. A. (2012). Ecological specialization and trade affect the outcome of negotiations in mutualism. Am. Nat. 179, 567–581. 10.1086/665006 PubMed DOI

Hall J. L., Williams L. E. (2000). Assimilate transport and partitioning in fungal biotrophic interactions. Aust. J. Plant Physiol. 27, 549–560. 10.1071/pp99140 DOI

Hammer E. C., Pallon J., Wallander H., Olsson P. A. (2011). Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol. Ecol. 76, 236–244. 10.1111/j.1574-6941.2011.01043.x PubMed DOI

Hayman D. S. (1974). Plant growth responses to vesicular-arbuscular mycorrhiza.6. Effect of light and temperature. New Phytol. 73, 71–80. 10.1111/j.1469-8137.1974.tb04607.x DOI

Heinemeyer A., Ineson P., Ostle N., Fitter A. H. (2006). Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol. 171, 159–170. 10.1111/j.1469-8137.2006.01730.x PubMed DOI

Heinemeyer A., Ridgway K. P., Edwards E. J., Benham D. G., Young J. P. W., Fitter A. H. (2003). Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Glob. Change Biol. 10, 52–64. 10.1111/j.1365-2486.2003.00713.x DOI

Hodge A., Fitter A. H. (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl. Acad. Sci. U.S.A. 107, 13754–13759. 10.1073/pnas.1005874107 PubMed DOI PMC

Hoeksema J. D., Chaudhary V. B., Gehring C. A., Johnson N. C., Karst J., Koide R. T., et al. . (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407. 10.1111/j.1461-0248.2009.01430.x PubMed DOI

Hurst S. E., Turnbull M. H., Norton D. A. (2002). The effect of plant light environment on mycorrhizal colonisation in field-grown seedlings of podocarp-angiosperm forest tree species. N. Z. J. Bot. 40, 65–72. 10.1080/0028825X.2002.9512771 DOI

Jakobsen I., Abbott L. K., Robson A. D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120, 371–380. 10.1111/j.1469-8137.1992.tb01077.x DOI

Jakobsen I., Rosendahl L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115, 77–83. 10.1111/j.1469-8137.1990.tb00924.x DOI

Janos D. P. (2007). Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17, 75–91. 10.1007/s00572-006-0094-1 PubMed DOI

Jansa J., Mozafar A., Frossard E. (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23, 481–488. 10.1051/agro:2003013 DOI

Jansa J., Mozafar A., Frossard E. (2005). Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276, 163–176. 10.1007/s11104-005-4274-0 DOI

Javaid A. (2009). Arbuscular mycorrhizal mediated nutrition in plants. J. Plant Nutr. 32, 1595–1618. 10.1080/01904160903150875 DOI

Jemo M., Souleymanou A., Frossard E., Jansa J. (2014). Cropping enhances mycorrhizal benefits to maize in a tropical soil. Soil Biol. Biochem. 79, 117–124. 10.1016/j.soilbio.2014.09.014 DOI

Johnson N. C., Graham J. H., Smith F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135, 575–586. 10.1046/j.1469-8137.1997.00729.x DOI

Johnson N. C., Wilson G. W. T., Wilson J. A., Miller R. M., Bowker M. A. (2015). Mycorrhizal phenotypes and the law of the minimum. New Phytol. 205, 1473–1484. 10.1111/nph.13172 PubMed DOI

Kaschuk G., Kuyper T. W., Leffelaar P. A., Hungria M., Giller K. E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem. 41, 1233–1244. 10.1016/j.soilbio.2009.03.005 DOI

Kiers E. T., Duhamel M., Beesetty Y., Mensah J. A., Franken O., Verbruggen E., et al. . (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882. 10.1126/science.1208473 PubMed DOI

Kiers E. T., van der Heijden M. G. A. (2006). Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87, 1627–1636. 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2 PubMed DOI

Knegt B., Jansa J., Franken O., Engelmoer D. J. P., Werner G. D. A., Bücking H., et al. (2016). Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecol. 20, 233–240. 10.1016/j.funeco.2014.09.011 DOI

Koide R. T. (2010). Mycorrhizal symbiosis and plant reproduction, in Arbuscular Mycorrhizas: Physiology and Function, eds Koltai H., Kapulnik Y. (Dordrecht: Springer; ), 297–320.

Konvalinková T., Püschel D., Janoušková M., Gryndler M., Jansa J. (2015). Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Front. Plant Sci. 6:65. 10.3389/fpls.2015.00065 PubMed DOI PMC

Korhonen J., Kytoviita M. M., Siikamaki P. (2004). Are resources allocated differently to symbiosis and reproduction in Geranium sylvaticum under different light conditions? Can. J. Bot. 82, 89–95. 10.1139/b03-142 DOI

Kyllo D. A., Velez V., Tyree M. T. (2003). Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria. New Phytol. 160, 443–454. 10.1046/j.1469-8137.2003.00896.x PubMed DOI

Landis F. C., Fraser L. H. (2008). A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol. 177, 466–479. 10.1111/j.1469-8137.2007.02268.x PubMed DOI

Lekberg Y., Hammer E. C., Olsson P. A. (2010). Plants as resource islands and storage units - adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol. Ecol. 74, 336–345. 10.1111/j.1574-6941.2010.00956.x PubMed DOI

Lendenmann M., Thonar C., Barnard R. L., Salmon Y., Werner R. A., Frossard E., et al. . (2011). Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21, 689–702. 10.1007/s00572-011-0371-5 PubMed DOI

Liu Y. J., Mao L., Li J. Y., Shi G. X., Jiang S. J., Ma X. J., et al. (2015). Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant Soil 386, 341–355. 10.1007/s11104-014-2261-z DOI

Louche-Tessandier D., Samson G., Hernandez-Sebastia C., Chagvardieff P., Desjardins Y. (1999). Importance of light and CO2 on the effects of endomycorrhizal colonization on growth and photosynthesis of potato plantlets (Solanum tuberosum) in an in vitro tripartite system. New Phytol. 142, 539–550. 10.1046/j.1469-8137.1999.00408.x DOI

Marschner P., Timonen S. (2005). Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl. Soil Ecol. 28, 23–36. 10.1016/j.apsoil.2004.06.007 DOI

Munkvold L., Kjøller R., Vestberg M., Rosendahl S., Jakobsen I. (2004). High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol. 164, 357–364. 10.1111/j.1469-8137.2004.01169.x PubMed DOI

Neumann E., George E. (2010). Nutrient uptake: The arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy, in Arbuscular Mycorrhizas: Physiology and Function, eds Koltai H., Kapulnik Y. (Dordrecht: Springer; ), 137–167.

Newsham K. K., Fitter A. H., Watkinson A. R. (1995). Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol. Evol. 10, 407–411. 10.1016/S0169-5347(00)89157-0 PubMed DOI

Olsson P. A., Rahm J., Aliasgharzad N. (2010). Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol. Ecol. 72, 123–131. 10.1111/j.1574-6941.2009.00833.x PubMed DOI

Palz W., Greif J. (1996). European Solar Radiation Atlas: Solar Radiation on Horizontal and Inclined Surfaces. Berlin: Springer.

Paul E. A., Kucey R. M. N. (1981). Carbon flow in plant microbial associations. Science 213, 473–474. 10.1126/science.213.4506.473 PubMed DOI

Pearson J. N., Smith S. E., Smith F. A. (1991). Effect of photon irradiance on the development and activity of VA mycorrhizal infection in Allium porrum. Mycol. Res. 95, 741–746. 10.1016/S0953-7562(09)80824-1 DOI

Pohlman C. L., Turton S. M., Goosem M. (2007). Edge effects of linear canopy openings on tropical rain forest understory microclimate. Biotropica 39, 62–71. 10.1111/j.1744-7429.2006.00238.x DOI

Reinhard S., Martin P., Marschner H. (1993). Interactions in the tripartite symbiosis of pea (Pisum sativum L), Glomus and Rhizobium under nonlimiting phosphorus supply. J. Plant Physiol. 141, 7–11. 10.1016/S0176-1617(11)80844-8 DOI

Saito M., Kato T. (1994). Effects of low temperature and shade on relationships between nodulation, vesicular-arbuscular mycorrhizal infection, and shoot growth of soybeans. Biol. Fertil. Soils 17, 206–211. 10.1007/BF00336324 DOI

Schreiner R. P., Pinkerton J. N. (2008). Ring nematodes (Mesocriconema xenoplax) alter root colonization and function of arbuscular mycorrhizal fungi in grape roots in a low P soil. Soil Biol. Biochem. 40, 1870–1877. 10.1016/j.soilbio.2008.03.010 DOI

Schubert A., Wyss P., Wiemken A. (1992). Occurrence of trehalose in vesicular-arbuscular mycorrhizal fungi and in mycorrhizal roots. J. Plant Physiol. 140, 41–45. 10.1016/S0176-1617(11)81054-0 DOI

Shi G. X., Liu Y. J., Johnson N. C., Olsson P. A., Mao L., Cheng G., et al. (2014). Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant Soil 378, 173–188. 10.1007/s11104-014-2022-z DOI

Smith F. A., Grace E. J., Smith S. E. (2009). More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol. 182, 347–358. 10.1111/j.1469-8137.2008.02753.x PubMed DOI

Smith F. A., Smith S. E. (2015). How harmonious are arbuscular mycorrhizal symbioses? Inconsistent concepts reflect different mindsets as well as results. New Phytol. 205, 1381–1384. 10.1111/nph.13202 PubMed DOI

Smith S. E., Gianinazzi-Pearson V. (1990). Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L - effects of photon irradiance and phosphate nutrition. Aust. J. Plant Physiol. 17, 177–188. 10.1071/PP9900177 DOI

Smith S. E., Read D. (2008). Mycorrhizal Symbiosis. Amsterdam: Academic Press.

Son C. L., Smith S. E. (1988). Mycorrhizal growth responses - interactions between photon irradiance and phosphorus nutrition. New Phytol. 108, 305–314. 10.1111/j.1469-8137.1988.tb04167.x PubMed DOI

Stonor R. N., Smith S. E., Manjarrez M., Facelli E., Smith F. A. (2014). Mycorrhizal responses in wheat: shading decreases growth but does not lower the contribution of the fungal phosphate uptake pathway. Mycorrhiza 24, 465–472. 10.1007/s00572-014-0556-9 PubMed DOI

Sulieman S., Schulze J., Tran L. S. P. (2013). Comparative analysis of the symbiotic efficiency of Medicago truncatula and Medicago sativa under phosphorus deficiency. Int. J. Mol. Sci. 14, 5198–5213. 10.3390/ijms14035198 PubMed DOI PMC

Tester M., Smith F. A., Smith S. E. (1985). Phosphate inflow into Trifolium subterraneum L - effects of photon Irradiance and mycorrhizal infection. Soil Biol. Biochem. 17, 807–810. 10.1016/0038-0717(85)90137-3 DOI

Tester M., Smith S. E., Smith F. A., Walker N. A. (1986). Effects of photon irradiance on the growth of shoots and roots, on the rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum L. New Phytol. 103, 375–390. 10.1111/j.1469-8137.1986.tb00623.x DOI

Tuomi J., Kytoviita M. M., Hardling R. (2001). Cost efficiency of nutrient acquisition and the advantage of mycorrhizal symbiosis for the host plant. Oikos 92, 62–70. 10.1034/j.1600-0706.2001.920108.x DOI

Valladares F., Niinemets U. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Ann. Rev. Ecol. Evol. Syst. 39, 237–257. 10.1146/annurev.ecolsys.39.110707.173506 DOI

van der Heijden M. G. A., Bardgett R. D., van Straalen N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310. 10.1111/j.1461-0248.2007.01139.x PubMed DOI

Verbruggen E., Jansa J., Hammer E. C., Rillig M. C. (2016). Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J. Ecol. 104, 261–269. 10.1111/1365-2745.12496 DOI

Vierheilig H., Bago B., Lerat S., Piché Y. (2002). Shoot-produced, light-dependent factors are partially involved in the expression of the arbuscular mycorrhizal (AM) status of AM host and non-host plants. J. Plant Nutr. Soil Sci. 165, 21–25. 10.1002/1522-2624(200202)165:1<21::AID-JPLN21>3.0.CO;2-9 DOI

Violi H. A., Menge J. A., Beaver R. J. (2007). Chaetomium elatum (Kunze: Chaetomiaceae) as a root-colonizing fungus in avocado: is it a mutualist, cheater, commensalistic associate, or pathogen? Am. J. Bot. 94, 690–700. 10.3732/ajb.94.4.690 PubMed DOI

Walder F., van der Heijden M. G. A. (2015). Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 1:15159 10.1038/nplants.2015.159 PubMed DOI

Werner G. D. A., Strassmann J. E., Ivens A. B. F., Engelmoer D. J. P., Verbruggen E., Queller D. C., et al. . (2014). Evolution of microbial markets. Proc. Natl. Acad. Sci. U.S.A. 111, 1237–1244. 10.1073/pnas.1315980111 PubMed DOI PMC

Whitbeck J. L. (2001). Effects of light environment on vesicular-arbuscular mycorrhiza development in Inga leiocalycina, a tropical wet forest tree. Biotropica 33, 303–311. 10.1111/j.1744-7429.2001.tb00180.x DOI

Wright D. P., Scholes J. D., Read D. J. (1998). Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ. 21, 209–216. 10.1046/j.1365-3040.1998.00280.x DOI

Zheng C. Y., Ji B. M., Zhang J. L., Zhang F. S., Bever J. D. (2015). Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. New Phytol. 205, 361–368. 10.1111/nph.13025 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...