Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
27375642
PubMed Central
PMC4893486
DOI
10.3389/fpls.2016.00782
Knihovny.cz E-zdroje
- Klíčová slova
- common mycorrhizal networks, costs and benefits, light intensity, mycorrhizal symbiosis, phosphorus acquisition, plant growth, shading duration,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases-on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore, these subjects deserve particular attention in the future.
Zobrazit více v PubMed
Augé R. M., Moore J. L., Cho K. H., Stutz J. C., Sylvia D. M., Al-Agely A. K., et al. . (2003). Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J. Plant Physiol. 160, 1147–1156. 10.1078/0176-1617-01154 PubMed DOI
Augé R. M., Toler H. D., Saxton A. M. (2014). Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front. Plant Sci. 5:562. 10.3389/fpls.2014.00562 PubMed DOI PMC
Bago B., Pfeffer P. E., Shachar-Hill Y. (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124, 949–957. 10.1104/pp.124.3.949 PubMed DOI PMC
Bereau M., Barigah T. S., Louisanna E., Garbaye J. (2000). Effects of endomycorrhizal development and light regimes on the growth of Dicorynia guianensis Amshoff seedlings. Ann. For. Sci. 57, 725–733. 10.1051/forest:2000153 DOI
Bethlenfalvay G. J., Pacovsky R. S. (1983). Light effects in mycorrhizal soybeans. Plant Physiol. 73, 969–972. 10.1104/pp.73.4.969 PubMed DOI PMC
Borges R. G., Chaney W. R. (1993). Solar irradiance and the development of endomycorrhizal green ash seedlings. Tree Physiol. 13, 227–238. 10.1093/treephys/13.3.227 PubMed DOI
Bravo A., York T., Pumplin N., Mueller L. A., Harrison M. J. (2016). Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat. Plants 2:15208 10.1038/nplants.2015.208 PubMed DOI
Calderón F. J., Schultz D. J., Paul E. A. (2012). Carbon allocation, belowground transfers, and lipid turnover in a plant-microbial association. Soil Sci. Soc. Am. J. 76, 1614–1623. 10.2136/sssaj2011.0440 DOI
Cardoso I. M., Boddington C. L., Janssen B. H., Oenema O., Kuyper T. W. (2006). Differential access to phosphorus pools of an oxisol by mycorrhizal and nonmycorrhizal maize. Commun. Soil Sci. Plant Anal. 37, 1537–1551. 10.1080/00103620600710074 DOI
Casieri L., Gallardo K., Wipf D. (2012). Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235, 1431–1447. 10.1007/s00425-012-1645-7 PubMed DOI
Daft M. J., El-Giahmi A. A. (1978). Effect of arbuscular mycorrhiza on plant growth.8. Effects of defoliation and light on selected hosts. New Phytol. 80, 365–372. 10.1111/j.1469-8137.1978.tb01570.x DOI
Dickson S. (2004). The Arum-Paris continuum of mycorrhizal symbioses. New Phytol. 163, 187–200. 10.1111/j.1469-8137.2004.01095.x PubMed DOI
Doidy J., van Tuinen D., Lamotte O., Corneillat M., Alcaraz G., Wipf D. (2012). The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Mol. Plant 5, 1346–1358. 10.1093/mp/sss079 PubMed DOI
Drigo B., Pijl A. S., Duyts H., Kielak A., Gamper H. A., Houtekamer M. J., et al. . (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. U.S.A. 107, 10938–10942. 10.1073/pnas.0912421107 PubMed DOI PMC
Euliss A. C., Fisk M. C., McCleneghan S. C., Neufeld H. S. (2007). Allocation and morphological responses to resource manipulations are unlikely to mitigate shade intolerance in Houstonia montana, a rare southern Appalachian herb. Can. J. Bot. 85, 976–985. 10.1139/B07-104 DOI
Ezawa T., Smith S. E., Smith F. A. (2002). P metabolism and transport in AM fungi. Plant Soil 244, 221–230. 10.1023/A:1020258325010 DOI
Fellbaum C. R., Gachomo E. W., Beesetty Y., Choudhari S., Strahan G. D., Pfeffer P. E., et al. . (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U.S.A. 109, 2666–2671. 10.1073/pnas.1118650109 PubMed DOI PMC
Fellbaum C. R., Mensah J. A., Cloos A. J., Strahan G. E., Pfeffer P. E., Kiers E. T., et al. . (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 203, 646–656. 10.1111/nph.12827 PubMed DOI
Franken P. (2010). Molecular-physiological aspects of the AM symbiosis post penetration, in Arbuscular Mycorrhizas: Physiology and Function, eds Koltai H., Kapulnik Y. (Dordrecht: Springer; ), 93–116.
Furlan V., Fortin J. A. (1977). Effects of light intensity on formation of vesicular-arbuscular endomycorrhizas on Allium cepa by Gigaspora calospora. New Phytol. 79, 335–340. 10.1111/j.1469-8137.1977.tb02213.x DOI
Füzy A., Bothe H., Molnar E., Biró B. (2014). Mycorrhizal symbiosis effects on growth of chalk false-brome (Brachypodium pinnatum) are dependent on the environmental light regime. J. Plant Physiol. 171, 1–6. 10.1016/j.jplph.2013.11.002 PubMed DOI
Gamage H. K., Singhakumara B. M. P., Ashton M. S. (2004). Effects of light and fertilization on arbuscular mycorrhizal colonization and growth of tropical rain-forest Syzygium tree seedlings. J. Trop. Ecol. 20, 525–534. 10.1017/S0266467404001592 DOI
Gehring C. A. (2003). Growth responses to arbuscular mycorrhizae by rain forest seedlings vary with light intensity and tree species. Plant Ecol. 167, 127–139. 10.1023/A:1023989610773 DOI
Graham J. H., Leonard R. T., Menge J. A. (1982). Interaction of light intensity and soil temperature with phosphorus inhibition of vesicular arbuscular mycorrhiza formation. New Phytol. 91, 683–690. 10.1111/j.1469-8137.1982.tb03347.x DOI
Grimoldi A. A., Kavanová M., Lattanzi F. A., Schaufele R., Schnyder H. (2006). Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange. New Phytol. 172, 544–553. 10.1111/j.1469-8137.2006.01853.x PubMed DOI
Grman E. (2012). Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93, 711–718. 10.1890/11-1358.1 PubMed DOI
Grman E., Robinson T. M. P., Klausmeier C. A. (2012). Ecological specialization and trade affect the outcome of negotiations in mutualism. Am. Nat. 179, 567–581. 10.1086/665006 PubMed DOI
Hall J. L., Williams L. E. (2000). Assimilate transport and partitioning in fungal biotrophic interactions. Aust. J. Plant Physiol. 27, 549–560. 10.1071/pp99140 DOI
Hammer E. C., Pallon J., Wallander H., Olsson P. A. (2011). Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol. Ecol. 76, 236–244. 10.1111/j.1574-6941.2011.01043.x PubMed DOI
Hayman D. S. (1974). Plant growth responses to vesicular-arbuscular mycorrhiza.6. Effect of light and temperature. New Phytol. 73, 71–80. 10.1111/j.1469-8137.1974.tb04607.x DOI
Heinemeyer A., Ineson P., Ostle N., Fitter A. H. (2006). Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol. 171, 159–170. 10.1111/j.1469-8137.2006.01730.x PubMed DOI
Heinemeyer A., Ridgway K. P., Edwards E. J., Benham D. G., Young J. P. W., Fitter A. H. (2003). Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Glob. Change Biol. 10, 52–64. 10.1111/j.1365-2486.2003.00713.x DOI
Hodge A., Fitter A. H. (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl. Acad. Sci. U.S.A. 107, 13754–13759. 10.1073/pnas.1005874107 PubMed DOI PMC
Hoeksema J. D., Chaudhary V. B., Gehring C. A., Johnson N. C., Karst J., Koide R. T., et al. . (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407. 10.1111/j.1461-0248.2009.01430.x PubMed DOI
Hurst S. E., Turnbull M. H., Norton D. A. (2002). The effect of plant light environment on mycorrhizal colonisation in field-grown seedlings of podocarp-angiosperm forest tree species. N. Z. J. Bot. 40, 65–72. 10.1080/0028825X.2002.9512771 DOI
Jakobsen I., Abbott L. K., Robson A. D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120, 371–380. 10.1111/j.1469-8137.1992.tb01077.x DOI
Jakobsen I., Rosendahl L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115, 77–83. 10.1111/j.1469-8137.1990.tb00924.x DOI
Janos D. P. (2007). Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17, 75–91. 10.1007/s00572-006-0094-1 PubMed DOI
Jansa J., Mozafar A., Frossard E. (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23, 481–488. 10.1051/agro:2003013 DOI
Jansa J., Mozafar A., Frossard E. (2005). Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276, 163–176. 10.1007/s11104-005-4274-0 DOI
Javaid A. (2009). Arbuscular mycorrhizal mediated nutrition in plants. J. Plant Nutr. 32, 1595–1618. 10.1080/01904160903150875 DOI
Jemo M., Souleymanou A., Frossard E., Jansa J. (2014). Cropping enhances mycorrhizal benefits to maize in a tropical soil. Soil Biol. Biochem. 79, 117–124. 10.1016/j.soilbio.2014.09.014 DOI
Johnson N. C., Graham J. H., Smith F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135, 575–586. 10.1046/j.1469-8137.1997.00729.x DOI
Johnson N. C., Wilson G. W. T., Wilson J. A., Miller R. M., Bowker M. A. (2015). Mycorrhizal phenotypes and the law of the minimum. New Phytol. 205, 1473–1484. 10.1111/nph.13172 PubMed DOI
Kaschuk G., Kuyper T. W., Leffelaar P. A., Hungria M., Giller K. E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem. 41, 1233–1244. 10.1016/j.soilbio.2009.03.005 DOI
Kiers E. T., Duhamel M., Beesetty Y., Mensah J. A., Franken O., Verbruggen E., et al. . (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882. 10.1126/science.1208473 PubMed DOI
Kiers E. T., van der Heijden M. G. A. (2006). Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87, 1627–1636. 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2 PubMed DOI
Knegt B., Jansa J., Franken O., Engelmoer D. J. P., Werner G. D. A., Bücking H., et al. (2016). Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecol. 20, 233–240. 10.1016/j.funeco.2014.09.011 DOI
Koide R. T. (2010). Mycorrhizal symbiosis and plant reproduction, in Arbuscular Mycorrhizas: Physiology and Function, eds Koltai H., Kapulnik Y. (Dordrecht: Springer; ), 297–320.
Konvalinková T., Püschel D., Janoušková M., Gryndler M., Jansa J. (2015). Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Front. Plant Sci. 6:65. 10.3389/fpls.2015.00065 PubMed DOI PMC
Korhonen J., Kytoviita M. M., Siikamaki P. (2004). Are resources allocated differently to symbiosis and reproduction in Geranium sylvaticum under different light conditions? Can. J. Bot. 82, 89–95. 10.1139/b03-142 DOI
Kyllo D. A., Velez V., Tyree M. T. (2003). Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria. New Phytol. 160, 443–454. 10.1046/j.1469-8137.2003.00896.x PubMed DOI
Landis F. C., Fraser L. H. (2008). A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol. 177, 466–479. 10.1111/j.1469-8137.2007.02268.x PubMed DOI
Lekberg Y., Hammer E. C., Olsson P. A. (2010). Plants as resource islands and storage units - adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol. Ecol. 74, 336–345. 10.1111/j.1574-6941.2010.00956.x PubMed DOI
Lendenmann M., Thonar C., Barnard R. L., Salmon Y., Werner R. A., Frossard E., et al. . (2011). Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21, 689–702. 10.1007/s00572-011-0371-5 PubMed DOI
Liu Y. J., Mao L., Li J. Y., Shi G. X., Jiang S. J., Ma X. J., et al. (2015). Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant Soil 386, 341–355. 10.1007/s11104-014-2261-z DOI
Louche-Tessandier D., Samson G., Hernandez-Sebastia C., Chagvardieff P., Desjardins Y. (1999). Importance of light and CO2 on the effects of endomycorrhizal colonization on growth and photosynthesis of potato plantlets (Solanum tuberosum) in an in vitro tripartite system. New Phytol. 142, 539–550. 10.1046/j.1469-8137.1999.00408.x DOI
Marschner P., Timonen S. (2005). Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl. Soil Ecol. 28, 23–36. 10.1016/j.apsoil.2004.06.007 DOI
Munkvold L., Kjøller R., Vestberg M., Rosendahl S., Jakobsen I. (2004). High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol. 164, 357–364. 10.1111/j.1469-8137.2004.01169.x PubMed DOI
Neumann E., George E. (2010). Nutrient uptake: The arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy, in Arbuscular Mycorrhizas: Physiology and Function, eds Koltai H., Kapulnik Y. (Dordrecht: Springer; ), 137–167.
Newsham K. K., Fitter A. H., Watkinson A. R. (1995). Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol. Evol. 10, 407–411. 10.1016/S0169-5347(00)89157-0 PubMed DOI
Olsson P. A., Rahm J., Aliasgharzad N. (2010). Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol. Ecol. 72, 123–131. 10.1111/j.1574-6941.2009.00833.x PubMed DOI
Palz W., Greif J. (1996). European Solar Radiation Atlas: Solar Radiation on Horizontal and Inclined Surfaces. Berlin: Springer.
Paul E. A., Kucey R. M. N. (1981). Carbon flow in plant microbial associations. Science 213, 473–474. 10.1126/science.213.4506.473 PubMed DOI
Pearson J. N., Smith S. E., Smith F. A. (1991). Effect of photon irradiance on the development and activity of VA mycorrhizal infection in Allium porrum. Mycol. Res. 95, 741–746. 10.1016/S0953-7562(09)80824-1 DOI
Pohlman C. L., Turton S. M., Goosem M. (2007). Edge effects of linear canopy openings on tropical rain forest understory microclimate. Biotropica 39, 62–71. 10.1111/j.1744-7429.2006.00238.x DOI
Reinhard S., Martin P., Marschner H. (1993). Interactions in the tripartite symbiosis of pea (Pisum sativum L), Glomus and Rhizobium under nonlimiting phosphorus supply. J. Plant Physiol. 141, 7–11. 10.1016/S0176-1617(11)80844-8 DOI
Saito M., Kato T. (1994). Effects of low temperature and shade on relationships between nodulation, vesicular-arbuscular mycorrhizal infection, and shoot growth of soybeans. Biol. Fertil. Soils 17, 206–211. 10.1007/BF00336324 DOI
Schreiner R. P., Pinkerton J. N. (2008). Ring nematodes (Mesocriconema xenoplax) alter root colonization and function of arbuscular mycorrhizal fungi in grape roots in a low P soil. Soil Biol. Biochem. 40, 1870–1877. 10.1016/j.soilbio.2008.03.010 DOI
Schubert A., Wyss P., Wiemken A. (1992). Occurrence of trehalose in vesicular-arbuscular mycorrhizal fungi and in mycorrhizal roots. J. Plant Physiol. 140, 41–45. 10.1016/S0176-1617(11)81054-0 DOI
Shi G. X., Liu Y. J., Johnson N. C., Olsson P. A., Mao L., Cheng G., et al. (2014). Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant Soil 378, 173–188. 10.1007/s11104-014-2022-z DOI
Smith F. A., Grace E. J., Smith S. E. (2009). More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol. 182, 347–358. 10.1111/j.1469-8137.2008.02753.x PubMed DOI
Smith F. A., Smith S. E. (2015). How harmonious are arbuscular mycorrhizal symbioses? Inconsistent concepts reflect different mindsets as well as results. New Phytol. 205, 1381–1384. 10.1111/nph.13202 PubMed DOI
Smith S. E., Gianinazzi-Pearson V. (1990). Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L - effects of photon irradiance and phosphate nutrition. Aust. J. Plant Physiol. 17, 177–188. 10.1071/PP9900177 DOI
Smith S. E., Read D. (2008). Mycorrhizal Symbiosis. Amsterdam: Academic Press.
Son C. L., Smith S. E. (1988). Mycorrhizal growth responses - interactions between photon irradiance and phosphorus nutrition. New Phytol. 108, 305–314. 10.1111/j.1469-8137.1988.tb04167.x PubMed DOI
Stonor R. N., Smith S. E., Manjarrez M., Facelli E., Smith F. A. (2014). Mycorrhizal responses in wheat: shading decreases growth but does not lower the contribution of the fungal phosphate uptake pathway. Mycorrhiza 24, 465–472. 10.1007/s00572-014-0556-9 PubMed DOI
Sulieman S., Schulze J., Tran L. S. P. (2013). Comparative analysis of the symbiotic efficiency of Medicago truncatula and Medicago sativa under phosphorus deficiency. Int. J. Mol. Sci. 14, 5198–5213. 10.3390/ijms14035198 PubMed DOI PMC
Tester M., Smith F. A., Smith S. E. (1985). Phosphate inflow into Trifolium subterraneum L - effects of photon Irradiance and mycorrhizal infection. Soil Biol. Biochem. 17, 807–810. 10.1016/0038-0717(85)90137-3 DOI
Tester M., Smith S. E., Smith F. A., Walker N. A. (1986). Effects of photon irradiance on the growth of shoots and roots, on the rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum L. New Phytol. 103, 375–390. 10.1111/j.1469-8137.1986.tb00623.x DOI
Tuomi J., Kytoviita M. M., Hardling R. (2001). Cost efficiency of nutrient acquisition and the advantage of mycorrhizal symbiosis for the host plant. Oikos 92, 62–70. 10.1034/j.1600-0706.2001.920108.x DOI
Valladares F., Niinemets U. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Ann. Rev. Ecol. Evol. Syst. 39, 237–257. 10.1146/annurev.ecolsys.39.110707.173506 DOI
van der Heijden M. G. A., Bardgett R. D., van Straalen N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310. 10.1111/j.1461-0248.2007.01139.x PubMed DOI
Verbruggen E., Jansa J., Hammer E. C., Rillig M. C. (2016). Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J. Ecol. 104, 261–269. 10.1111/1365-2745.12496 DOI
Vierheilig H., Bago B., Lerat S., Piché Y. (2002). Shoot-produced, light-dependent factors are partially involved in the expression of the arbuscular mycorrhizal (AM) status of AM host and non-host plants. J. Plant Nutr. Soil Sci. 165, 21–25. 10.1002/1522-2624(200202)165:1<21::AID-JPLN21>3.0.CO;2-9 DOI
Violi H. A., Menge J. A., Beaver R. J. (2007). Chaetomium elatum (Kunze: Chaetomiaceae) as a root-colonizing fungus in avocado: is it a mutualist, cheater, commensalistic associate, or pathogen? Am. J. Bot. 94, 690–700. 10.3732/ajb.94.4.690 PubMed DOI
Walder F., van der Heijden M. G. A. (2015). Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 1:15159 10.1038/nplants.2015.159 PubMed DOI
Werner G. D. A., Strassmann J. E., Ivens A. B. F., Engelmoer D. J. P., Verbruggen E., Queller D. C., et al. . (2014). Evolution of microbial markets. Proc. Natl. Acad. Sci. U.S.A. 111, 1237–1244. 10.1073/pnas.1315980111 PubMed DOI PMC
Whitbeck J. L. (2001). Effects of light environment on vesicular-arbuscular mycorrhiza development in Inga leiocalycina, a tropical wet forest tree. Biotropica 33, 303–311. 10.1111/j.1744-7429.2001.tb00180.x DOI
Wright D. P., Scholes J. D., Read D. J. (1998). Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ. 21, 209–216. 10.1046/j.1365-3040.1998.00280.x DOI
Zheng C. Y., Ji B. M., Zhang J. L., Zhang F. S., Bever J. D. (2015). Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. New Phytol. 205, 361–368. 10.1111/nph.13025 PubMed DOI
Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi