Protists are key players in the utilization of protein nitrogen in the arbuscular mycorrhizal hyphosphere

. 2025 Jun ; 246 (6) : 2753-2764. [epub] 20250422

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40259857

Grantová podpora
24-12013S Grantová Agentura České Republiky
RVO61388971 Mikrobiologický Ústav, Akademie Věd České Republiky
CZ.02.01.01/00/22_008/0004597 Ministerstvo Školství, Mládeže a Tělovýchovy

While largely depending on other microorganisms for nitrogen (N) mineralization, arbuscular mycorrhizal fungi (AMF) can transfer N from organic sources to their host plants. Here, we compared N acquisition by the AMF hyphae from chitin and protein sources and assessed the effects of microbial interactions in the hyphosphere. We employed in vitro compartmented microcosms, each containing three distinct hyphosphere compartments amended with different N sources (protein, chitin, or ammonium chloride), one of which was enriched with 15N isotope. All hyphosphere compartments were supplied with Paenibacillus bacteria, with or without the protist Polysphondylium pallidum. We measured the effect of these model microbiomes on the efficiency of 15N transfer to roots via the AMF hyphae. We found that the hyphae efficiently took up N from ammonium chloride, competing strongly with bacteria and protists. Mobilization of 15N from chitin and protein was facilitated by bacteria and protists, respectively. Notably, AMF priming significantly affected the abundance of bacteria and protists in hyphosphere compartments and promoted mineralization of protein N by protists. Subsequently, this N was transferred into roots. Our results provide the first unequivocal evidence that roots can acquire N from proteins present in the AMF hyphosphere and that protists may play a crucial role in protein N mineralization.

Zobrazit více v PubMed

Adamczyk B. 2021. How do terrestrial plants access high molecular mass organic nitrogen, and why does it matter for soil organic matter stabilization? Plant and Soil 465: 583–592.

Blank CE, Hinman NW. 2016. Cyanobacterial and algal growth on chitin as a source of nitrogen; ecological, evolutionary, and biotechnological implications. Algal Research 15: 152–163.

Bonkowski M. 2004. Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist 162: 617–631. PubMed

Bonkowski M, Clarholm M. 2012. Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozoologica 51: 237–247.

Bukovská P, Bonkowski M, Konvalinková T, Beskid O, Hujslová M, Püschel D, Řezáčová V, Gutiérrez‐Núñez MS, Gryndler M, Jansa J. 2018. Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? Mycorrhiza 28: 269–283. PubMed

Bukovská P, Püschel D, Hršelová H, Jansa J, Gryndler M. 2016. Can inoculation with living soil standardize microbial communities in soilless potting substrates? Applied Soil Ecology 108: 278–287.

Clarholm M. 1985. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biology and Biochemistry 17: 181–187.

Coskun D, Britto D, Shi W, Kronzucker HJ. 2017. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants 3: 17074. PubMed

Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG, Declerck S. 2005. Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Fortin JA, Strullu DG, eds. In vitro culture of mycorrhizas. Soil biology, vol. 4. Berlin, Heidelberg: Springer, 341–375.

Czaban W, Jämtgård S, Näsholm T, Rasmussen J, Nicolaisen M, Fomsgaard IS. 2016. Direct acquisition of organic N by white clover even in the presence of inorganic N. Plant and Soil 407: 91–107.

Duan S, Feng G, Limpens E, Bonfante P, Xie X, Zhang L. 2024. Cross‐kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nature Reviews Microbiology 22: 773–790. PubMed

Dudáš M, Pjevac P, Kotianová M, Gančarčíková K, Rozmoš M, Hršelová H, Bukovská P, Jansa J. 2022. Arbuscular mycorrhiza and nitrification: disentangling processes and players through using synthetic nitrification inhibitors. Applied and Environmental Microbiology 88: e01369‐22. PubMed PMC

Enggrob KL, Jakobsen CM, Pedersen IF, Rasmussen J. 2019. Newly depolymerized large organic N contributes directly to amino acid uptake in young maize plants. New Phytologist 224: 689–699. PubMed

Farrell M, Prendergast‐Miller M, Jones DL, Hill PW, Condron LM. 2014. Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biology and Biochemistry 77: 261–267.

Farzadfar S, Knight JD, Congreves KA. 2021. Soil organic nitrogen: an overlooked but potentially significant contribution to crop nutrition. Plant and Soil 462: 7–23. PubMed PMC

Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H. 2012. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA 109: 2666–2671. PubMed PMC

Govindarajulu M, Pfeffer P, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar‐Hill Y. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435: 819–823. PubMed

Grandy AS, Daly AB, Bowles TM, Gaudin AC, Jilling A, Leptin A, McDaniel MD, Wade J, Waterhouse H. 2022. The nitrogen gap in soil health concepts and fertility measurements. Soil Biology and Biochemistry 175: 108856.

Gryndler M, Trilčová J, Hršelová H, Streiblová E, Gryndlerová H, Jansa J. 2013. Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach. Mycorrhiza 23: 341–348. PubMed

Hagh‐Doust N, Mikryukov V, Anslan S, Bahram M, Puusepp R, Dulya O, Tedersoo L. 2023. Effects of nitrogen deposition on carbon and nutrient cycling along a natural soil acidity gradient as revealed by metagenomics. New Phytologist 238: 2607–2620. PubMed

Henkes GJ, Kandeler E, Marhan S, Scheu S, Bonkowski M. 2018. Interactions of mycorrhiza and protists in the rhizosphere systemically alter microbial community composition, plant shoot‐to‐root ratio and within‐root system nitrogen allocation. Frontiers in Environmental Science 6: 117.

Herdler S, Kreuzer K, Scheu S, Bonkowski M. 2008. Interactions between arbuscular mycorrhizal fungi (Glomus intraradices, Glomeromycota) and amoebae (Acanthamoeba castellanii, Protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biology and Biochemistry 40: 660–668.

Hestrin R, Hammer EC, Mueller CW, Lehmann J. 2019. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Communications Biology 2: 233. PubMed PMC

Hestrin R, Weber PK, Pett‐Ridge J, Lehmann J. 2021. Plants and mycorrhizal symbionts acquire substantial soil nitrogen from gaseous ammonia transport. New Phytologist 231: 1746–1757. PubMed

Hodge A, Campbell CD, Fitter AH. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413: 297–299. PubMed

Hodge A, Fitter AH. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences, USA 107: 13754–13759. PubMed PMC

Holz M, Lewin S, Kolb S, Becker JN, Bergmann J. 2024. How to get to the N – a call for interdisciplinary research on organic N utilization pathways by plants. Plant and Soil 508: 955–969.

Hoysted GA, Field KJ, Sinanaj B, Bell CA, Bidartondo MI, Pressel S. 2023. Direct nitrogen, phosphorus and carbon exchanges between Mucoromycotina ‘fine root endophyte’ fungi and a flowering plant in novel monoxenic cultures. New Phytologist 238: 70–79. PubMed PMC

Hünninghaus M, Dibbern D, Kramer S, Koller R, Pausch J, Schloter‐Hai B, Lueders T. 2019. Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize. Soil Biology and Biochemistry 134: 122–130.

Jämtgård S, Näsholm T, Huss‐Danell K. 2008. Characteristics of amino acid uptake in barley. Plant and Soil 302: 221–231.

Jansa J, Bukovská P, Hršelová H, Püschel D. 2018. Utilization of organic nitrogen by arbuscular mycorrhizal hyphae in soil‐zooming into the hyphosphere microbiome. Journal of Integrated Field Science 15: 2–7.

Jansa J, Šmilauer P, Borovička J, Hršelová H, Forczek ST, Slámová K, Řezanka T, Rozmoš M, Bukovská P, Gryndler M. 2020. Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza 30: 63–77. PubMed

Johnson NC, Wilson GW, Bowker MA, Wilson JA, Miller RM. 2010. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences, USA 107: 2093–2098. PubMed PMC

Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M. 2013. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytologist 199: 203–211. PubMed

Kreuzer K, Adamczyk J, Iijima M, Wagner M, Scheu S, Bonkowski M. 2006. Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biology and Biochemistry 38: 1665–1672.

Kuzyakov Y, Xu X. 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist 198: 656–669. PubMed

Kuroshima KI, Sakane T, Takata R, Yokota A. 1996. Bacillus ehimensis sp. nov. and Bacillus chitinolyticus sp. nov., new chitinolytic members of the genus Bacillus . International Journal of Systematic Bacteriology 46: 76–80.

Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J. 2014. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters 9: 105011.

Lee JS, Pyun YR, Bae KS. 2004. Transfer of Bacillus ehimensis and Bacillus chitinolyticus to the genus Paenibacillus with emended descriptions of Paenibacillus ehimensis comb. nov. and Paenibacillus chitinolyticus comb. nov. International Journal of Systematic and Evolutionary Microbiology 54: 929–933. PubMed

Leigh J, Fitter AH, Hodge A. 2011. Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. FEMS Microbiology Ecology 76: 428–438. PubMed

Leigh J, Hodge A, Fitter AH. 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist 181: 199–207. PubMed

Liu D, Huang Y, Yan H, Jiang Y, Zhao T, An S. 2018. Dynamics of soil nitrogen fractions and their relationship with soil microbial communities in two forest species of northern China. PLoS ONE 13: e0196567. PubMed PMC

Ma X, Gözaydın G, Yang H, Ning W, Han X, Poon NY, Liang H, Yan N, Zhou K. 2020. Upcycling chitin‐containing waste into organonitrogen chemicals via an integrated process. Proceedings of the National Academy of Sciences, USA 117: 7719–7728. PubMed PMC

Marschner P, Baumann K. 2003. Changes in bacterial community structure induced by mycorrhizal colonisation in split‐root maize. Plant and Soil 251: 279–289.

Näsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytologist 182: 31–48. PubMed

Niu L, Zhang H, Wu Z, Wang Y, Liu H, Wu X, Wang W. 2018. Modified TCA/acetone precipitation of plant proteins for proteomic analysis. PLoS ONE 13: e0202238. PubMed PMC

Paungfoo‐Lonhienne C, Lonhienne TG, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S. 2008. Plants can use protein as a nitrogen source without assistance from other organisms. Proceedings of the National Academy of Sciences, USA 105: 4524–4529. PubMed PMC

Pepe A, Giovannetti M, Sbrana C. 2018. Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Scientific Reports 8: 10235. PubMed PMC

Phillips DL, Gregg JW. 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–179. PubMed

Pinheiro J, Bates D, R Core Team . 2023. nlme: linear and nonlinearmixed effects models . R package v.3. 1‐164.

Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J. 2016. Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecology and Evolution 6: 4332–4346. PubMed PMC

R Development Core Team . 2024. R: a language and environment for statistical computing, v.4.4.2. Vienna, Austria: R Foundation for Statistical Computing. http://www.r‐project.org.

Rillig MC, Mummey DL, Ramsey PW, Klironomos JN, Gannon JE. 2006. Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis‐associated bacteria. FEMS Microbiology Ecology 57: 389–395. PubMed

Rodríguez‐Caballero G, Caravaca F, Fernández‐González AJ, Alguacil MM, Fernández‐López M, Roldán A. 2017. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Science of the Total Environment 584: 838–848. PubMed

Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M. 2009. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana . The ISME Journal 3: 675–684. PubMed

Rozmoš M, Bukovská P, Hršelová H, Kotianová M, Dudáš M, Gančarčíková K, Jansa J. 2022. Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. The ISME Journal 16: 676–685. PubMed PMC

Savolainen T, Kytöviita MM. 2022. Mycorrhizal symbiosis changes host nitrogen source use. Plant and Soil 471: 643–654.

Tanaka Y, Yano K. 2005. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell & Environment 28: 1247–1254.

Tegeder M, Masclaux‐Daubresse C. 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist 217: 35–53. PubMed

Thao NV, Obayashi Y, Yokokawa T, Suzuki S. 2014. Coexisting protist‐bacterial community accelerates protein transformation in microcosm experiments. Frontiers in Marine Science 1: 69.

Thirkell TJ, Cameron DD, Hodge A. 2016. Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant, Cell & Environment 39: 1683–1690. PubMed PMC

Thonar C, Erb A, Jansa J. 2012. Real‐time PCR to quantify composition of arbuscular mycorrhizal fungal communities‐‐marker design, verification, calibration and field validation. Molecular Ecology Resources 12: 219–232. PubMed

Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Freidit Frey N, Gianinazzi‐Pearson V et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences, USA 110: 20117–20122. PubMed PMC

Veresoglou SD, Verbruggen E, Makarova O, Mansour I, Sen R, Rillig MC. 2019. Arbuscular mycorrhizal fungi alter the community structure of ammonia oxidizers at high fertility via competition for soil NH4+. Microbial Ecology 78: 147–158. PubMed

Wang M, Pendall E, Fang C, Li B. 2018. A global perspective on agroecosystem nitrogen cycles after returning crop residue. Agriculture, Ecosystems & Environment 266: 49–54.

Xu YF, Chu XT, Zhang XH, Liu Q, Miao YJ, Sun YF. 2018. The forms of nitrogen source influence the interaction between Elymus nutans Griseb. and arbuscular mycorrhizal fungi. South African Journal of Botany 119: 37–44.

Zhang C, Geisen S, Berendsen RL, van der Heijden MG. 2024. Specialized protist communities on mycorrhizal fungal hyphae. Mycorrhiza 34: 517–524. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...