The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 28578
Austrian Science Fund FWF - Austria
PubMed
33168869
PubMed Central
PMC7652833
DOI
10.1038/s41598-020-76305-w
PII: 10.1038/s41598-020-76305-w
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- brouci fyziologie MeSH
- ekologie MeSH
- ekosystém * MeSH
- ječmen (rod) MeSH
- jedlá semena MeSH
- lineární modely MeSH
- plevel fyziologie MeSH
- predátorské chování MeSH
- pšenice MeSH
- semena rostlinná fyziologie MeSH
- zemědělství metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Carabids are generalist predators that contribute to the agricultural ecosystem service of seedbank regulation via weed seed predation. To facilitate adoption of this ecosystem services by farmers, knowledge of weed seed predation and the resilience of seedbank regulation with co-varying availability of alternative prey is crucial. Using assessments of the seedbank and predation on seed cards in 57 cereal fields across Europe, we demonstrate a regulatory effect on the soil seedbank, at a continental scale, by groups formed of omnivore, seed-eating (granivore + omnivore) and all species of carabids just prior to the crop-harvest. Regulation was associated with a positive relationship between the activity-density of carabids and seed predation, as measured on seed cards. We found that per capita seed consumption on the cards co-varied negatively with the biomass of alternative prey, i.e. Aphididae, Collembola and total alternative prey biomass. Our results underline the importance of weed seedbank regulation by carabids, across geographically significant scales, and indicate that the effectiveness of this biocontrol may depend on the availability of alternative prey that disrupt the weed seed predation.
Department of Ecology Swedish University of Agricultural Sciences Box 7044 75007 Uppsala Sweden
Mountain Agriculture Research Unit Institute of Ecology University of Innsbruck Innsbruck Austria
Zobrazit více v PubMed
Begg GS, et al. A functional overview of conservation biological control. Crop Prot. 2017;97:145–158. doi: 10.1016/j.cropro.2016.11.008. DOI
Shields MW, et al. History, current situation and challenges for conservation biological control. Biol. Control. 2019;131:25–35. doi: 10.1016/j.biocontrol.2018.12.010. DOI
Petit S, Boursault A, Bohan DA. Weed seed choice by carabid beetles (Coleoptera: Carabidae): Linking field measurements with laboratory diet assessments. Eur. J. Entomol. 2014;111:1–6. doi: 10.14411/eje.2014.086. DOI
Saska P, Honěk A, Martinková Z. Preferences of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zool. Acad. Sci. Hung. 2019;65:57–76. doi: 10.17109/AZH.65.Suppl.57.2019. DOI
Honěk A, Martinkova Z, Saska P, Pekar S. Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera) Basic Appl. Ecol. 2007;8:343–353. doi: 10.1016/j.baae.2006.07.002. DOI
Honěk A, Martinkova Z, Jarosik V. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 2003;100:531–544. doi: 10.14411/eje.2003.081. DOI
Kulkarni SS, Dosdall LM, Willenborg CJ. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: A review. Weed Sci. 2015;63:355–376. doi: 10.1614/WS-D-14-00067.1. DOI
Petit S, Trichard A, Biju-Duval L, McLaughlin B, Bohan DA. Interactions between conservation agricultural practice and landscape composition promote weed seed predation by invertebrates. Agric. Ecosyst. Environ. 2017;240:45–53. doi: 10.1016/j.agee.2017.02.014. DOI
Kromp B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 1999;74:187–228. doi: 10.1016/S0167-8809(99)00037-7. DOI
Firbank LG, Watkinson AR. On the analysis of competition within two-species mixtures of plants. J. Appl. Ecol. 1985;22:503–517. doi: 10.2307/2403181. DOI
Westerman PR, et al. Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci. 2005;53:382–392. doi: 10.1614/WS-04-130R. DOI
Petit S, et al. Biodiversity-based options for arable weed management. A review. Agron. Sustain. Dev. 2018;38:48. doi: 10.1007/s13593-018-0525-3. DOI
Westerman PR, Dixon PM, Liebman M. Burial rates of surrogate seeds in arable fields. Weed Res. 2009;49:142–152. doi: 10.1111/j.1365-3180.2008.00684.x. DOI
Trichard A, Ricci B, Ducourtieux C, Petit S. The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric. Ecosyst. Environ. 2014;188:40–47. doi: 10.1016/j.agee.2014.01.031. DOI
Carbonne B, Bohan DA, Petit S. Key carabid species drive spring weed seed predation of Viola arvensis. Biol. Control. 2020;141:104148. doi: 10.1016/j.biocontrol.2019.104148. DOI
Westerman PR, Wes JS, Kropff MJ, Van Der Werf W. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 2003;40:824–836. doi: 10.1046/j.1365-2664.2003.00850.x. DOI
Blubaugh CK, Kaplan I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 2016;64:80–86. doi: 10.1614/WS-D-15-00111.1. DOI
Pannwitt H, Westerman PR, Gerowitt B. Post-dispersal seed predation can limit the number of seedlings of Echinochloa crus-galli. Biol. Control. 2019;143:95–98.
Bohan DA, Boursault A, Brooks DR, Petit S. National-scale regulation of the weed seedbank by carabid predators. J. Appl. Ecol. 2011;48:888–898. doi: 10.1111/j.1365-2664.2011.02008.x. DOI
Saska P, Van Der Werf W, De Vries E, Westerman PR. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of predation on weed seeds. Bull. Entomol. Res. 2008;98:169–181. doi: 10.1017/S0007485307005512. PubMed DOI
Mauchline AL, Watson SJ, Brown VK, Froud-Williams RJ. Post-dispersal seed predation of non-target weeds in arable crops. Weed Res. 2005;45:157–164. doi: 10.1111/j.1365-3180.2004.00443.x. DOI
Davis AS, Raghu S. Weighing abiotic and biotic influences on weed seed predation. Weed Res. 2010;50:402–412. doi: 10.1111/j.1365-3180.2010.00790.x. DOI
Davis AS, Taylor EC, Haramoto ER, Renner KA. Annual postdispersal weed seed predation in contrasting field environments. Weed Sci. 2013;61:296–302. doi: 10.1614/WS-D-12-00157.1. DOI
Lövei GL, Szentkiralyi F. Carabids climbing maize plants. Z. Angew. Entomol. 1984;97:107–110. doi: 10.1111/j.1439-0418.1984.tb03722.x. DOI
Frei B, Guenay Y, Bohan DA, Traugott M, Wallinger C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. J. Pest Sci. 2019;2004(92):935–942. doi: 10.1007/s10340-019-01109-5. PubMed DOI PMC
Roubinet E, et al. High redundancy as well as complementary prey choice characterize generalist predator food webs in agroecosystems. Sci. Rep. 2018;8:8054. doi: 10.1038/s41598-018-26191-0. PubMed DOI PMC
Staudacher K, et al. Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Funct. Ecol. 2018;32:809–819. doi: 10.1111/1365-2435.13028. PubMed DOI PMC
Evans EW. Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies - A review. Eur. J. Entomol. 2008;105:369–380. doi: 10.14411/eje.2008.047. DOI
Snyder WE. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control. 2019;135:73–82. doi: 10.1016/j.biocontrol.2019.04.017. DOI
Harwood JD, et al. Invertebrate biodiversity affects predator fitness and hence potential to control pests in crops. Biol. Control. 2009;51:499–506. doi: 10.1016/j.biocontrol.2009.09.007. DOI
Chailleux, A., Mohl, E. K., Teixeira Alves, M., Messelink, G. J. & Desneux, N. Natural enemy-mediated indirect interactions among prey species: Potential for enhancing biocontrol services in agroecosystems. Pest Manag. Sci.70, 1769–1779 (2014). PubMed
von Berg K, Thies C, Tscharntke T, Scheu S. Cereal aphid control by generalist predators in presence of belowground alternative prey: Complementary predation as affected by prey density. Pedobiologia (Jena). 2009;53:41–48. doi: 10.1016/j.pedobi.2009.03.001. DOI
Mair J, Port GR. Predation by the carabid beetles Pterostichus madidus and Nebria brevicollis is affected by size and condition of the prey slug Deroceras reticulatum. Agric. For. Entomol. 2001;3:99–106. doi: 10.1046/j.1461-9563.2001.00093.x. DOI
Symondson, W. O. C. et al. Biodiversity vs. biocontrol: positive and negative effects of alternative prey on control of slugs by carabid beetles. Bull. Entomol. Res.96, 637–645 (2006). PubMed
Prasad RP, Snyder WE. Polyphagy complicates conservation biological control that targets generalist predators. J. Appl. Ecol. 2006;43:343–352. doi: 10.1111/j.1365-2664.2006.01129.x. DOI
Renkema JM, Lynch DH, Cutler GC, MacKenzie K, Walde SJ. Predation by Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) on immature Rhagoletis mendax Curran (Diptera: Tephritidae) in semi-field and field conditions. Biol. Control. 2012;60:46–53. doi: 10.1016/j.biocontrol.2011.10.004. DOI
Roubinet E, et al. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol. Appl. 2017;27:1167–1177. doi: 10.1002/eap.1510. PubMed DOI
Honěk A, Saska P, Martinkova Z. Seasonal variation in seed predation by adult carabid beetles. Entomol. Exp. Appl. 2006;118:157–162. doi: 10.1111/j.1570-7458.2006.00376.x. DOI
Talarico F, Giglio A, Pizzolotto R, Brandmayr P. A synthesis of feeding habits and reproduction rhythm in Italian seed-feeding ground beetles (Coleoptera: Carabidae) Eur. J. Entomol. 2016;113:325–336. doi: 10.14411/eje.2016.042. DOI
Charalabidis A, Dechaume-Moncharmont F-X, Carbonne B, Bohan DA, Petit S. Diversity of foraging strategies and responses to predator interference in seed-eating carabid beetles. Basic Appl. Ecol. 2019;36:13–24. doi: 10.1016/j.baae.2019.02.003. DOI
Pilipaviius, V. Weed seed rain dynamics and ecological control ability in agrophytocenosis. in Herbicides—Advances in Research (ed. Price, A.) 51–83 (InTech, 2013). 10.5772/55972.
Saska P, Koprdová S, Martinková Z, Honěk A. Comparing methods of weed seed exposure to predators. Ann. Appl. Biol. 2014;164:301–312. doi: 10.1111/aab.12102. DOI
Johnson NE, Cameron RS. Phytophagous ground beetles. Ann. Entomol. Soc. Am. 1969;62:909–914. doi: 10.1093/aesa/62.4.909. DOI
Russell MC, Lambrinos J, Records E, Ellen G. Seasonal shifts in ground beetle (Coleoptera: Carabidae) species and functional composition maintain prey consumption in Western Oregon agricultural landscapes. Biol. Control. 2017;106:54–63. doi: 10.1016/j.biocontrol.2016.12.008. DOI
Williams CL, et al. Over-winter predation of Abutilon theophrasti and Setaria faberi seeds in arable land. Weed Res. 2009;49:439–447. doi: 10.1111/j.1365-3180.2009.00715.x. DOI
Westerman P, Luijendijk CD, Wevers JDA, Van Der Werf W. Weed seed predation in a phenologically late crop. Weed Res. 2011;51:157–164. doi: 10.1111/j.1365-3180.2010.00834.x. DOI
Winder L, et al. Predatory activity and spatial pattern: The response of generalist carabids to their aphid prey. J. Anim. Ecol. 2005;74:443–454. doi: 10.1111/j.1365-2656.2005.00939.x. DOI
Bohan DA, et al. Spatial dynamics of predation by carabid beetles on slugs. J. Anim. Ecol. 2000;69:367–379. doi: 10.1046/j.1365-2656.2000.00399.x. DOI
Frank SD, Shrewsbury PM, Denno RF. Plant versus prey resources: Influence on omnivore behavior and herbivore suppression. Biol. Control. 2011;57:229–235. doi: 10.1016/j.biocontrol.2011.03.004. DOI
Abrams PA, Matsuda H. Positive indirect effects between prey species that share predators. Ecology. 1996;77:610–616. doi: 10.2307/2265634. DOI
Boetzl FA, Konle A, Krauss J. Aphid cards – Useful model for assessing predation rates or bias prone nonsense? J. Appl. Entomol. 2020;144:74–80. doi: 10.1111/jen.12692. DOI
Bilde T, Toft S. Consumption by carabid beetles of three cereal aphid species relative to other prey types. Entomophaga. 1997;42:21–32. doi: 10.1007/BF02769876. DOI
Madsen M, Terkildsen S, Toft S. Microcosm studies on control of aphids by generalist arthropod predators: Effects of alternative prey. Biocontrol. 2004;49:483–504. doi: 10.1023/B:BICO.0000036442.70171.66. DOI
Fawki, S. & Toft, S. Food preferences and the value of animal food for the carabid beetle Amara similata (Gyll.) (Col., Carabidae). J. Appl. Entomol.129, 551–556 (2005).
Saska P. Effect of diet on the fecundity of three carabid beetles. Physiol. Entomol. 2008;33:188–192. doi: 10.1111/j.1365-3032.2008.00618.x. DOI
Haschek C, Drapela T, Schuller N, Fiedler K, Frank T. Carabid beetle condition, reproduction and density in winter oilseed rape affected by field and landscape parameters. J. Appl. Entomol. 2012;136:665–674. doi: 10.1111/j.1439-0418.2011.01694.x. DOI
Symondson WOC, Sunderland KD, Greenstone MH. Can generalist predators be effective biocontrol agents? Annu. Rev. Entomol. 2002;47:561–594. doi: 10.1146/annurev.ento.47.091201.145240. PubMed DOI
Lundgren, J. G. Chapter 18: Biological control of weed seeds in agriculture using omnivorous insects. in Relationships of Natural Enemies and Non-Prey Foods 333–351 (Springer Netherlands, 2009).
Löbl, I. & Smetana, A. Catalogue of Palaearctic Colcoptera. Vol. 1 (2003).
Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org—A dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers.7, 195–205 (2014).
Penell A, Raub F, Höfer H. Estimating biomass from body size of European spiders based on regression models. J. Arachnol. 2018;46:413. doi: 10.1636/JoA-S-17-044.1. DOI
Pey B, et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE. 2014;9:e108985. doi: 10.1371/journal.pone.0108985. PubMed DOI PMC
Nentwig, W., Blick, T., Gloor, D., Hänggi, A. & Kropf, C. Araneae: Spiders of Europe. https://araneae.nmbe.ch, https://www.araneae.nmbe.ch (2019).
Caballero M, Baquero E, Ariño AH, Jordana R. Indirect biomass estimations in Collembola. Pedobiologia (Jena). 2004;48:551–557. doi: 10.1016/j.pedobi.2004.06.006. DOI
Migui SM, Lamb RJ. Sources of variation in the interaction between three cereal aphids (Hemiptera: Aphididae) and wheat (Poaceae) Bull. Entomol. Res. 2006;96:235–241. doi: 10.1079/BER2006419. PubMed DOI
Brooks, D. R. et al. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Philos. Trans. R. Soc. B Biol. Sci.358, 1847–1862 (2003). PubMed PMC
Bohan DA, et al. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc. R. Soc. B Biol. Sci. 2005;272:463–474. doi: 10.1098/rspb.2004.3049. PubMed DOI PMC
John, F. & Weisberg, S. An R Companion to Applied Regression. (Sage, 2019).
Long, J. jtools: Analysis and Presentation of Social Scientific Data. R package version 2.0.1. (2019).
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org (2019).