Prey Switching and Natural Pest Control Potential of Carabid Communities over the Winter Wheat Cropping Season

. 2024 Aug 13 ; 15 (8) : . [epub] 20240813

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39194815

Grantová podpora
AAP CasDar ARENA n°5653 Ministère de l'Agriculture et de la Souveraineté alimentaire
ANR-17-CE32-0011 Agence Nationale de la Recherche

To date, evaluating the diets of natural enemies like carabids has largely been limited to spatially explicit and short-term sampling. This leaves a knowledge gap for the intra-annual dynamics of carabid diets, and the provision and timing of delivery of natural pest control services. Season-long pitfall trapping of adult carabids was conducted in conventional winter wheat fields, from November 2018 to June 2019, in five French departments. Diagnostic Multiplex PCR of carabid gut contents was used to determine the dynamics of carabid diets. The overall detection rate of target prey DNA was high across carabid individuals (80%) but varied with the prey group. The rate of detection was low for pests, at 8.1% for slugs and 9.6% for aphids. Detection of intraguild predation and predation on decomposers was higher, at 23.8% for spiders, 37.9% for earthworms and 64.6% for springtails. Prey switching was high at the carabid community level, with pest consumption and intraguild predation increasing through the cropping season as the availability of these prey increased in the environment, while the detection of decomposer DNA decreased. Variation in diet through the cropping season was characterized by: (i) complementary predation on slug and aphid pests; and (ii) temporal complementarity in the predominant carabid taxa feeding on each pest. We hypothesize that natural pest control services delivered by carabids are determined by complementary contributions to predation by the different carabid taxa over the season.

Zobrazit více v PubMed

Letourneau D., Jedlicka J., Bothwell S., Moreno C. Effects of Natural Enemy Biodiversity on the Suppression of Arthropod Herbivores in Terrestrial Ecosystems. Annu. Rev. Ecol. Syst. 2009;40:573–592. doi: 10.1146/annurev.ecolsys.110308.120320. DOI

Snyder W.E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control. 2019;135:73–82. doi: 10.1016/j.biocontrol.2019.04.017. DOI

Daouti E., Jonsson M., Vico G., Menegat A. Seed predation is key to preventing population growth of the weed Alopecurus myosuroides. J. Appl. Ecol. 2022;59:471–482. doi: 10.1111/1365-2664.14064. DOI

Yoo H.J.S., O’Neil R.J. Temporal relationships between the generalist predator, Orius insidiosus, and its two major prey in soybean. Biol. Control. 2009;48:168–180. doi: 10.1016/j.biocontrol.2008.10.007. DOI

Kromp B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 1999;74:187–228. doi: 10.1016/S0167-8809(99)00037-7. DOI

Lövei G.L., Sunderland K.D. Ecology and Behavior of Ground Beetles (Coleoptera: Carabidae) Annu. Rev. Entomol. 1996;41:231–256. doi: 10.1146/annurev.en.41.010196.001311. PubMed DOI

Frei B., Guenay Y., Bohan D.A., Traugott M., Wallinger C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. J. Pest. Sci. 2019;92:935–942. doi: 10.1007/s10340-019-01109-5. PubMed DOI PMC

Greenstone M.H., Szendrei Z., Payton M.E., Rowley D.L., Coudron T.C., Weber D.C. Choosing natural enemies for conservation biological control: Use of the prey detectability half-life to rank key predators of Colorado potato beetle. Entomol. Exp. Appl. 2010;136:97–107. doi: 10.1111/j.1570-7458.2010.01006.x. DOI

Reich I., Jessie C., Ahn S.-J., Choi M.-Y., Williams C., Gormally M., Mc Donnell R. Assessment of the Biological Control Potential of Common Carabid Beetle Species for Autumn- and Winter-Active Pests (Gastropoda, Lepidoptera, Diptera: Tipulidae) in Annual Ryegrass in Western Oregon. Insects. 2020;11:722. doi: 10.3390/insects11110722. PubMed DOI PMC

King R.A., Vaughan I.P., Bell J.R., Bohan D.A., Symondson W.O.C. Prey choice by carabid beetles feeding on an earthworm community analysed using species- and lineage-specific PCR primers. Mol. Ecol. 2010;19:1721–1732. doi: 10.1111/j.1365-294X.2010.04602.x. PubMed DOI

Davey J.S., Vaughan I.P., King R.A., Bell J.R., Bohan D.A., Bruford M.W., Holland J.M., Symondson W.O.C. Intraguild predation in winter wheat: Prey choice by a common epigeal carabid consuming spiders. J. Appl. Ecol. 2013;50:271–279. doi: 10.1111/1365-2664.12008. DOI

Staudacher K., Jonsson M., Traugott M. Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. J. Pest. Sci. 2016;89:281–293. doi: 10.1007/s10340-015-0685-8. PubMed DOI PMC

Carbonne B., Petit S., Neidel V., Foffova H., Daouti E., Frei B., Skuhrovec J., Řezáč M., Saska P., Wallinger C., et al. The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey. Sci. Rep. 2020;10:19315. doi: 10.1038/s41598-020-76305-w. PubMed DOI PMC

Honek A., Martinkova Z., Saska P., Pekar S. Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera) Basic. Appl. Ecol. 2007;8:343–353. doi: 10.1016/j.baae.2006.07.002. DOI

Charalabidis A., Dechaume-Moncharmont F.-X., Carbonne B., Bohan D.A., Petit S. Diversity of foraging strategies and responses to predator interference in seed-eating carabid beetles. Basic. Appl. Ecol. 2019;36:13–24. doi: 10.1016/j.baae.2019.02.003. DOI

Loughridge A.H., Luff M.L. Aphid Predation by Harpalus rufipes (Degeer) (Coleoptera: Carabidae) in the Laboratory and Field. J. Appl. Ecol. 1983;20:451–462. doi: 10.2307/2403519. DOI

Hajek A.E., Hannam J.J., Nielsen C., Bell A.J., Liebherr J.K. Distribution and Abundance of Carabidae (Coleoptera) Associated with Soybean Aphid (Hemiptera: Aphididae) Populations in Central New York. Ann. Entomol. Soc. Am. 2007;100:876–886. doi: 10.1603/0013-8746(2007)100[876:DAAOCC]2.0.CO;2. DOI

Symondson W.O.C., Sunderland K.D., Greenstone M.H. Can generalist predators be effective biocontrol agents? Annu. Rev. Entomol. 2002;47:561–594. doi: 10.1146/annurev.ento.47.091201.145240. PubMed DOI

Lang A., Filser J., Henschel J.R. Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop. Agric. Ecosyst. Environ. 1999;72:189–199. doi: 10.1016/S0167-8809(98)00186-8. DOI

Birkhofer K., Bylund H., Dalin P., Ferlian O., Gagic V., Hambäck P.A., Klapwijk M., Mestre L., Roubinet E., Schroeder M., et al. Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecol. Evol. 2017;7:1942–1953. doi: 10.1002/ece3.2791. PubMed DOI PMC

Roubinet E., Birkhofer K., Malsher G., Staudacher K., Ekbom B., Traugott M., Jonsson M. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol. Appl. 2017;27:1167–1177. doi: 10.1002/eap.1510. PubMed DOI

Staudacher K., Rubbmark O.R., Birkhofer K., Malsher G., Sint D., Jonsson M., Traugott M. Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Funct. Ecol. 2018;32:809–819. doi: 10.1111/1365-2435.13028. PubMed DOI PMC

Iuliano B., Gratton C. Temporal Resource (Dis)continuity for Conservation Biological Control: From Field to Landscape Scales. Front. Sustain. Food Syst. 2020;4:127. doi: 10.3389/fsufs.2020.00127. DOI

Gray C., Ma A., McLaughlin O., Petit S., Woodward G., Bohan D.A. Ecological plasticity governs ecosystem services in multilayer networks. Commun. Biol. 2021;4:75. doi: 10.1038/s42003-020-01547-3. PubMed DOI PMC

Roger J.-L., Jambon O., Bouger G. Clé de Détermination Des Carabides—Paysages Agricoles du Nord Ouest de la France. SAD-Paysage, Institut National de Recherche Agronomique; Rennes, France: 2013.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 9 August 2024)]. Available online: https://www.R-project.org/

Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Hartig F., Lohse L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models, R Package Version 0.4.6. 2022. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=DHARMa.

Fox J., Weisberg S., Price B., Adler D., Bates D., Baud-Bovy G., Bolker B., Ellison S., Firth D., Friendly M., et al. Car: Companion to Applied Regression 2019, R Package Version 3.1.2. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=car.

Lenth R.V., Buerkner P., Herve M., Love J., Riebl H., Singmann H. Emmeans: Estimated Marginal Means, Aka Least-Squares Means 2020, R Package Version 1.10.0. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=emmeans.

Dormann C., Gruber B., Fründ J. Introducing the bipartite Package: Analysing Ecological Networks. R News. 2008;8/2:8–11.

Husson F., Josse J., Le S., Mazet J. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining 2018, R Package Version 2.10. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=FactoMineR.

Barnier J. Explor: Interactive Interfaces for Results Exploration 2019, R Package Version 0.3.10. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=explor.

Scaccini D., Panini M., Chiesa O., Nicoli Aldini R., Tabaglio V., Mazzoni E. Slug Monitoring and Impacts on the Ground Beetle Community in the Frame of Sustainable Pest Control in Conventional and Conservation Agroecosystems. Insects. 2020;11:380. doi: 10.3390/insects11060380. PubMed DOI PMC

Janssen A., Montserrat M., HilleRisLambers R., Roos AM de Pallini A., Sabelis M.W. Intraguild Predation Usually does not Disrupt Biological Control. In: Brodeur J., Boivin G., editors. Trophic and Guild in Biological Interactions Control. Springer Netherlands; Dordrecht, The Netherlands: 2006. pp. 21–44. DOI

Rosenheim J.A., Harmon J.P. The Influence of Intraguild Predation on the Suppression of a Shared Prey Population: An Empirical Reassessment. In: Brodeur J., Boivin G., editors. Trophic and Guild in Biological Interactions Control. Springer Netherlands; Dordrecht, The Netherlands: 2006. pp. 1–20. DOI

Sunderland K.D. The Diet of some Predatory Arthropods in Cereal Crops. J. Appl. Ecol. 1975;12:507–515. doi: 10.2307/2402171. DOI

Settle W.H., Ariawan H., Astuti E.T., Cahyana W., Hakim A.L., Hindayana D., Lestari A.S. Managing Tropical Rice Pests Through Conservation of Generalist Natural Enemies and Alternative Prey. Ecology. 1996;77:1975–1988. doi: 10.2307/2265694. DOI

Kamenova S., Leroux C., Polin S.E., Plantegenest M. Community-wide stable isotope analysis reveals two distinct trophic groups in a service-providing carabid community. Bull. Entomol. Res. 2018;108:130–139. doi: 10.1017/S0007485317000542. PubMed DOI

McKemey A.R., Symondson W.O.C., Glen D.M., Brain P. Effects of Slug Size on Predation by Pterostichus melanarius (Coleoptera: Carabidae) Biocontrol Sci. Technol. 2001;11:81–91. doi: 10.1080/09583150020029763. DOI

Oberholzer F., Frank T. Predation by the Carabid Beetles Pterostichus melanarius and Poecilus cupreus on Slugs and Slug Eggs. Biocontrol Sci. Technol. 2003;13:99–110. doi: 10.1080/0958315021000054421. DOI

McKemey A.R., Symondson W.O.C., Glen D.M. Predation and prey size choice by the carabid beetle Pterostichus melanarius (Coleoptera: Carabidae): The dangers of extrapolating from laboratory to field. Bull. Entomol. Res. 2003;93:227–234. doi: 10.1079/BER2003240. PubMed DOI

Honek A., Martinkova Z., Jarosik V. Ground beetles (Carabidae) as seed predators. EJE. 2003;100:531–544. doi: 10.14411/eje.2003.081. DOI

Saska P., Honek A. Development of the beetle parasitoids, Brachinus explodens and B. crepitans (Coleoptera: Carabidae) J. Zool. 2004;262:29–36. doi: 10.1017/S0952836903004412. DOI

Berg K von Traugott M., Symondson W.O.C., Scheu S. The effects of temperature on detection of prey DNA in two species of carabid beetle. Bull. Entomol. Res. 2008;98:263–269. doi: 10.1017/S0007485308006020. PubMed DOI

Sheppard S.K., Bell J., Sunderland K.D., Fenlon J., Skervin D., Symondson W.O.C. Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Mol. Ecol. 2005;14:4461–4468. doi: 10.1111/j.1365-294X.2005.02742.x. PubMed DOI

Harper G.L., King R.A., Dodd C.S., Harwood J.D., Glen D.M., Bruford M.W., Symondson W.O.C. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol. Ecol. 2005;14:819–827. doi: 10.1111/j.1365-294X.2005.02442.x. PubMed DOI

Guenay Y., Trager H., Glarcher I., Traugott M., Wallinger C. Limited detection of secondarily consumed plant food by DNA-based diet analysis of omnivorous carabid beetles. Environ. DNA. 2021;3:426–434. doi: 10.1002/edn3.128. DOI

Harwood J.D., Phillips S.W., Sunderland K.D., Symondson W.O.C. Secondary predation: Quantification of food chain errors in an aphid–spider–carabid system using monoclonal antibodies. Mol. Ecol. 2001;10:2049–2057. doi: 10.1046/j.0962-1083.2001.01349.x. PubMed DOI

Ferrante M., Barone G., Lövei G.L. The carabid Pterostichus melanarius uses chemical cues for opportunistic predation and saprophagy but not for finding healthy prey. BioControl. 2017;62:741–747. doi: 10.1007/s10526-017-9829-5. DOI

von Berg K., Traugott M., Scheu S. Scavenging and active predation in generalist predators: A mesocosm study employing DNA-based gut content analysis. Pedobiologia. 2012;55:1–5. doi: 10.1016/j.pedobi.2011.07.001. DOI

Mair J., Port G.R. Predation by the carabid beetles Pterostichus madidus and Nebria brevicollis is affected by size and condition of the prey slug Deroceras reticulatum. Agric. For. Entomol. 2001;3:99–106. doi: 10.1046/j.1461-9563.2001.00093.x. DOI

Baulechner D., Jauker F., Neubauer T.A., Wolters V. Convergent evolution of specialized generalists: Implications for phylogenetic and functional diversity of carabid feeding groups. Ecol. Evol. 2020;10:11100–11110. doi: 10.1002/ece3.6746. PubMed DOI PMC

Baulechner D., Jauker F., Wolters V. Carabid adaptation to a collembolan diet: Hunting efficiency and nutritional value. Ecol. Entomol. 2022;47:242–248. doi: 10.1111/een.13106. DOI

Hintzpeter U., Bauer T. The antennal setal trap of the Ground beetle Loricera pilicornis: A specialization for feeding on Collembola. J. Zool. 1986;208:615–630. doi: 10.1111/j.1469-7998.1986.tb01527.x. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...