Prey Switching and Natural Pest Control Potential of Carabid Communities over the Winter Wheat Cropping Season
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AAP CasDar ARENA n°5653
Ministère de l'Agriculture et de la Souveraineté alimentaire
ANR-17-CE32-0011
Agence Nationale de la Recherche
PubMed
39194815
PubMed Central
PMC11354267
DOI
10.3390/insects15080610
PII: insects15080610
Knihovny.cz E-zdroje
- Klíčová slova
- alternative prey, food web, intraguild predation, molecular gut content analysis, multiplex PCR diagnostic, pest control,
- Publikační typ
- časopisecké články MeSH
To date, evaluating the diets of natural enemies like carabids has largely been limited to spatially explicit and short-term sampling. This leaves a knowledge gap for the intra-annual dynamics of carabid diets, and the provision and timing of delivery of natural pest control services. Season-long pitfall trapping of adult carabids was conducted in conventional winter wheat fields, from November 2018 to June 2019, in five French departments. Diagnostic Multiplex PCR of carabid gut contents was used to determine the dynamics of carabid diets. The overall detection rate of target prey DNA was high across carabid individuals (80%) but varied with the prey group. The rate of detection was low for pests, at 8.1% for slugs and 9.6% for aphids. Detection of intraguild predation and predation on decomposers was higher, at 23.8% for spiders, 37.9% for earthworms and 64.6% for springtails. Prey switching was high at the carabid community level, with pest consumption and intraguild predation increasing through the cropping season as the availability of these prey increased in the environment, while the detection of decomposer DNA decreased. Variation in diet through the cropping season was characterized by: (i) complementary predation on slug and aphid pests; and (ii) temporal complementarity in the predominant carabid taxa feeding on each pest. We hypothesize that natural pest control services delivered by carabids are determined by complementary contributions to predation by the different carabid taxa over the season.
IGEPP INRAE Institut Agro Université de Rennes 35000 Rennes France
IGEPP INRAE Institut Agro Université de Rennes 35653 Le Rheu France
Zobrazit více v PubMed
Letourneau D., Jedlicka J., Bothwell S., Moreno C. Effects of Natural Enemy Biodiversity on the Suppression of Arthropod Herbivores in Terrestrial Ecosystems. Annu. Rev. Ecol. Syst. 2009;40:573–592. doi: 10.1146/annurev.ecolsys.110308.120320. DOI
Snyder W.E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control. 2019;135:73–82. doi: 10.1016/j.biocontrol.2019.04.017. DOI
Daouti E., Jonsson M., Vico G., Menegat A. Seed predation is key to preventing population growth of the weed Alopecurus myosuroides. J. Appl. Ecol. 2022;59:471–482. doi: 10.1111/1365-2664.14064. DOI
Yoo H.J.S., O’Neil R.J. Temporal relationships between the generalist predator, Orius insidiosus, and its two major prey in soybean. Biol. Control. 2009;48:168–180. doi: 10.1016/j.biocontrol.2008.10.007. DOI
Kromp B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 1999;74:187–228. doi: 10.1016/S0167-8809(99)00037-7. DOI
Lövei G.L., Sunderland K.D. Ecology and Behavior of Ground Beetles (Coleoptera: Carabidae) Annu. Rev. Entomol. 1996;41:231–256. doi: 10.1146/annurev.en.41.010196.001311. PubMed DOI
Frei B., Guenay Y., Bohan D.A., Traugott M., Wallinger C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. J. Pest. Sci. 2019;92:935–942. doi: 10.1007/s10340-019-01109-5. PubMed DOI PMC
Greenstone M.H., Szendrei Z., Payton M.E., Rowley D.L., Coudron T.C., Weber D.C. Choosing natural enemies for conservation biological control: Use of the prey detectability half-life to rank key predators of Colorado potato beetle. Entomol. Exp. Appl. 2010;136:97–107. doi: 10.1111/j.1570-7458.2010.01006.x. DOI
Reich I., Jessie C., Ahn S.-J., Choi M.-Y., Williams C., Gormally M., Mc Donnell R. Assessment of the Biological Control Potential of Common Carabid Beetle Species for Autumn- and Winter-Active Pests (Gastropoda, Lepidoptera, Diptera: Tipulidae) in Annual Ryegrass in Western Oregon. Insects. 2020;11:722. doi: 10.3390/insects11110722. PubMed DOI PMC
King R.A., Vaughan I.P., Bell J.R., Bohan D.A., Symondson W.O.C. Prey choice by carabid beetles feeding on an earthworm community analysed using species- and lineage-specific PCR primers. Mol. Ecol. 2010;19:1721–1732. doi: 10.1111/j.1365-294X.2010.04602.x. PubMed DOI
Davey J.S., Vaughan I.P., King R.A., Bell J.R., Bohan D.A., Bruford M.W., Holland J.M., Symondson W.O.C. Intraguild predation in winter wheat: Prey choice by a common epigeal carabid consuming spiders. J. Appl. Ecol. 2013;50:271–279. doi: 10.1111/1365-2664.12008. DOI
Staudacher K., Jonsson M., Traugott M. Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. J. Pest. Sci. 2016;89:281–293. doi: 10.1007/s10340-015-0685-8. PubMed DOI PMC
Carbonne B., Petit S., Neidel V., Foffova H., Daouti E., Frei B., Skuhrovec J., Řezáč M., Saska P., Wallinger C., et al. The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey. Sci. Rep. 2020;10:19315. doi: 10.1038/s41598-020-76305-w. PubMed DOI PMC
Honek A., Martinkova Z., Saska P., Pekar S. Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera) Basic. Appl. Ecol. 2007;8:343–353. doi: 10.1016/j.baae.2006.07.002. DOI
Charalabidis A., Dechaume-Moncharmont F.-X., Carbonne B., Bohan D.A., Petit S. Diversity of foraging strategies and responses to predator interference in seed-eating carabid beetles. Basic. Appl. Ecol. 2019;36:13–24. doi: 10.1016/j.baae.2019.02.003. DOI
Loughridge A.H., Luff M.L. Aphid Predation by Harpalus rufipes (Degeer) (Coleoptera: Carabidae) in the Laboratory and Field. J. Appl. Ecol. 1983;20:451–462. doi: 10.2307/2403519. DOI
Hajek A.E., Hannam J.J., Nielsen C., Bell A.J., Liebherr J.K. Distribution and Abundance of Carabidae (Coleoptera) Associated with Soybean Aphid (Hemiptera: Aphididae) Populations in Central New York. Ann. Entomol. Soc. Am. 2007;100:876–886. doi: 10.1603/0013-8746(2007)100[876:DAAOCC]2.0.CO;2. DOI
Symondson W.O.C., Sunderland K.D., Greenstone M.H. Can generalist predators be effective biocontrol agents? Annu. Rev. Entomol. 2002;47:561–594. doi: 10.1146/annurev.ento.47.091201.145240. PubMed DOI
Lang A., Filser J., Henschel J.R. Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop. Agric. Ecosyst. Environ. 1999;72:189–199. doi: 10.1016/S0167-8809(98)00186-8. DOI
Birkhofer K., Bylund H., Dalin P., Ferlian O., Gagic V., Hambäck P.A., Klapwijk M., Mestre L., Roubinet E., Schroeder M., et al. Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecol. Evol. 2017;7:1942–1953. doi: 10.1002/ece3.2791. PubMed DOI PMC
Roubinet E., Birkhofer K., Malsher G., Staudacher K., Ekbom B., Traugott M., Jonsson M. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol. Appl. 2017;27:1167–1177. doi: 10.1002/eap.1510. PubMed DOI
Staudacher K., Rubbmark O.R., Birkhofer K., Malsher G., Sint D., Jonsson M., Traugott M. Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Funct. Ecol. 2018;32:809–819. doi: 10.1111/1365-2435.13028. PubMed DOI PMC
Iuliano B., Gratton C. Temporal Resource (Dis)continuity for Conservation Biological Control: From Field to Landscape Scales. Front. Sustain. Food Syst. 2020;4:127. doi: 10.3389/fsufs.2020.00127. DOI
Gray C., Ma A., McLaughlin O., Petit S., Woodward G., Bohan D.A. Ecological plasticity governs ecosystem services in multilayer networks. Commun. Biol. 2021;4:75. doi: 10.1038/s42003-020-01547-3. PubMed DOI PMC
Roger J.-L., Jambon O., Bouger G. Clé de Détermination Des Carabides—Paysages Agricoles du Nord Ouest de la France. SAD-Paysage, Institut National de Recherche Agronomique; Rennes, France: 2013.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 9 August 2024)]. Available online: https://www.R-project.org/
Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Hartig F., Lohse L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models, R Package Version 0.4.6. 2022. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=DHARMa.
Fox J., Weisberg S., Price B., Adler D., Bates D., Baud-Bovy G., Bolker B., Ellison S., Firth D., Friendly M., et al. Car: Companion to Applied Regression 2019, R Package Version 3.1.2. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=car.
Lenth R.V., Buerkner P., Herve M., Love J., Riebl H., Singmann H. Emmeans: Estimated Marginal Means, Aka Least-Squares Means 2020, R Package Version 1.10.0. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=emmeans.
Dormann C., Gruber B., Fründ J. Introducing the bipartite Package: Analysing Ecological Networks. R News. 2008;8/2:8–11.
Husson F., Josse J., Le S., Mazet J. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining 2018, R Package Version 2.10. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=FactoMineR.
Barnier J. Explor: Interactive Interfaces for Results Exploration 2019, R Package Version 0.3.10. [(accessed on 9 August 2024)]. Available online: https://CRAN.R-project.org/package=explor.
Scaccini D., Panini M., Chiesa O., Nicoli Aldini R., Tabaglio V., Mazzoni E. Slug Monitoring and Impacts on the Ground Beetle Community in the Frame of Sustainable Pest Control in Conventional and Conservation Agroecosystems. Insects. 2020;11:380. doi: 10.3390/insects11060380. PubMed DOI PMC
Janssen A., Montserrat M., HilleRisLambers R., Roos AM de Pallini A., Sabelis M.W. Intraguild Predation Usually does not Disrupt Biological Control. In: Brodeur J., Boivin G., editors. Trophic and Guild in Biological Interactions Control. Springer Netherlands; Dordrecht, The Netherlands: 2006. pp. 21–44. DOI
Rosenheim J.A., Harmon J.P. The Influence of Intraguild Predation on the Suppression of a Shared Prey Population: An Empirical Reassessment. In: Brodeur J., Boivin G., editors. Trophic and Guild in Biological Interactions Control. Springer Netherlands; Dordrecht, The Netherlands: 2006. pp. 1–20. DOI
Sunderland K.D. The Diet of some Predatory Arthropods in Cereal Crops. J. Appl. Ecol. 1975;12:507–515. doi: 10.2307/2402171. DOI
Settle W.H., Ariawan H., Astuti E.T., Cahyana W., Hakim A.L., Hindayana D., Lestari A.S. Managing Tropical Rice Pests Through Conservation of Generalist Natural Enemies and Alternative Prey. Ecology. 1996;77:1975–1988. doi: 10.2307/2265694. DOI
Kamenova S., Leroux C., Polin S.E., Plantegenest M. Community-wide stable isotope analysis reveals two distinct trophic groups in a service-providing carabid community. Bull. Entomol. Res. 2018;108:130–139. doi: 10.1017/S0007485317000542. PubMed DOI
McKemey A.R., Symondson W.O.C., Glen D.M., Brain P. Effects of Slug Size on Predation by Pterostichus melanarius (Coleoptera: Carabidae) Biocontrol Sci. Technol. 2001;11:81–91. doi: 10.1080/09583150020029763. DOI
Oberholzer F., Frank T. Predation by the Carabid Beetles Pterostichus melanarius and Poecilus cupreus on Slugs and Slug Eggs. Biocontrol Sci. Technol. 2003;13:99–110. doi: 10.1080/0958315021000054421. DOI
McKemey A.R., Symondson W.O.C., Glen D.M. Predation and prey size choice by the carabid beetle Pterostichus melanarius (Coleoptera: Carabidae): The dangers of extrapolating from laboratory to field. Bull. Entomol. Res. 2003;93:227–234. doi: 10.1079/BER2003240. PubMed DOI
Honek A., Martinkova Z., Jarosik V. Ground beetles (Carabidae) as seed predators. EJE. 2003;100:531–544. doi: 10.14411/eje.2003.081. DOI
Saska P., Honek A. Development of the beetle parasitoids, Brachinus explodens and B. crepitans (Coleoptera: Carabidae) J. Zool. 2004;262:29–36. doi: 10.1017/S0952836903004412. DOI
Berg K von Traugott M., Symondson W.O.C., Scheu S. The effects of temperature on detection of prey DNA in two species of carabid beetle. Bull. Entomol. Res. 2008;98:263–269. doi: 10.1017/S0007485308006020. PubMed DOI
Sheppard S.K., Bell J., Sunderland K.D., Fenlon J., Skervin D., Symondson W.O.C. Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Mol. Ecol. 2005;14:4461–4468. doi: 10.1111/j.1365-294X.2005.02742.x. PubMed DOI
Harper G.L., King R.A., Dodd C.S., Harwood J.D., Glen D.M., Bruford M.W., Symondson W.O.C. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol. Ecol. 2005;14:819–827. doi: 10.1111/j.1365-294X.2005.02442.x. PubMed DOI
Guenay Y., Trager H., Glarcher I., Traugott M., Wallinger C. Limited detection of secondarily consumed plant food by DNA-based diet analysis of omnivorous carabid beetles. Environ. DNA. 2021;3:426–434. doi: 10.1002/edn3.128. DOI
Harwood J.D., Phillips S.W., Sunderland K.D., Symondson W.O.C. Secondary predation: Quantification of food chain errors in an aphid–spider–carabid system using monoclonal antibodies. Mol. Ecol. 2001;10:2049–2057. doi: 10.1046/j.0962-1083.2001.01349.x. PubMed DOI
Ferrante M., Barone G., Lövei G.L. The carabid Pterostichus melanarius uses chemical cues for opportunistic predation and saprophagy but not for finding healthy prey. BioControl. 2017;62:741–747. doi: 10.1007/s10526-017-9829-5. DOI
von Berg K., Traugott M., Scheu S. Scavenging and active predation in generalist predators: A mesocosm study employing DNA-based gut content analysis. Pedobiologia. 2012;55:1–5. doi: 10.1016/j.pedobi.2011.07.001. DOI
Mair J., Port G.R. Predation by the carabid beetles Pterostichus madidus and Nebria brevicollis is affected by size and condition of the prey slug Deroceras reticulatum. Agric. For. Entomol. 2001;3:99–106. doi: 10.1046/j.1461-9563.2001.00093.x. DOI
Baulechner D., Jauker F., Neubauer T.A., Wolters V. Convergent evolution of specialized generalists: Implications for phylogenetic and functional diversity of carabid feeding groups. Ecol. Evol. 2020;10:11100–11110. doi: 10.1002/ece3.6746. PubMed DOI PMC
Baulechner D., Jauker F., Wolters V. Carabid adaptation to a collembolan diet: Hunting efficiency and nutritional value. Ecol. Entomol. 2022;47:242–248. doi: 10.1111/een.13106. DOI
Hintzpeter U., Bauer T. The antennal setal trap of the Ground beetle Loricera pilicornis: A specialization for feeding on Collembola. J. Zool. 1986;208:615–630. doi: 10.1111/j.1469-7998.1986.tb01527.x. DOI