Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK23020101
National Agency for Agricultural Research of the Ministry of Agriculture of the Czech Republic
SV24-14-21360
Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague
PubMed
40870577
PubMed Central
PMC12386928
DOI
10.3390/insects16080776
PII: insects16080776
Knihovny.cz E-zdroje
- Klíčová slova
- ddPCR, edible insects, food authentication, gut content analysis, house cricket (Acheta domesticus), qPCR, yellow mealworm (Tenebrio molitor),
- Publikační typ
- časopisecké články MeSH
Due to their nutritional value and sustainability, edible insect-based foods are gaining popularity in Europe. Their use is regulated by EU legislation, which defines authorised species and sets labelling requirements. Molecular tools are being developed to authenticate such products. In this study, yellow mealworm (Tenebrio molitor) larvae authorised for human consumption were fed wheat flour-based diets containing varying proportions of house cricket (Acheta domesticus) flour for 21 days. This was followed by a 48 h starvation period to assess the persistence of insect DNA in the digestive tract. Two novel, species-specific, single-copy markers were designed: ampd gene for the Acheta domesticus and MyD88 gene for the Tenebrio molitor. These were applied using qPCR and ddPCR. Both methods successfully detected cricket DNA in the guts of starved larvae. Linear regression analysis revealed a strong, statistically significant correlation between the proportion of Acheta domesticus flour in the diet and the normalised relative quantity of DNA. ddPCR proved to be more sensitive than qPCR, particularly in the detection of low DNA levels. These results suggest that the presence of DNA from undeclared insect species in edible insects may be indicative of their diet rather than contamination or adulteration. This highlights the importance of contextual interpretation in food authenticity testing.
Zobrazit více v PubMed
Van Huis A., van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P. Edible Insects: Future Prospects for Food and Feed Security. Food and Agriculture Organization of the United Nations; Rome, Italy: 2013.
Kłobukowski F., Śmiechowska M., Skotnicka M. Edible insects from the perspective of sustainability—A review of the hazards and benefits. Foods. 2025;14:1382. doi: 10.3390/foods14081382. PubMed DOI PMC
Aleknavičius D., Lukša J., Strazdaitė-Žielienė Ž., Servienė E. The bacterial microbiota of edible insects Acheta domesticus and Gryllus assimilis revealed by high content analysis. Foods. 2022;11:1073. doi: 10.3390/foods11081073. PubMed DOI PMC
Churchward-Venne T.A., Pinckaers P.J.M., van Loon J.J.A., van Loon L.J.C. Consideration of insects as a source of dietary protein for human consumption. Nutr. Rev. 2017;75:1035–1045. doi: 10.1093/nutrit/nux057. PubMed DOI
Nowak V., Persijn D., Rittenschober D., Charrondiere U.R. Review of food composition data for edible insects. Food Chem. 2016;193:39–46. doi: 10.1016/j.foodchem.2014.10.114. PubMed DOI
Yoo J.S., Cho K.H., Hong J.S., Jang H.S., Chung Y.H., Kwon G.T., Shin D.G., Kim Y.Y. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas. J. Anim. Sci. 2018;32:387–394. doi: 10.5713/ajas.18.0647. PubMed DOI PMC
Song Y., Kim M., Moon C., Seo D., Han Y.S., Jo Y.H., Noh M.Y., Park Y., Kim S., Kim Y.W., et al. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio Molitor. Entomol. Res. 2018;48:227–233. doi: 10.1111/1748-5967.12304. DOI
Van Broekhoven S., Oonincx D.G.A.B., Van Huis A., Van Loon J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015;73:1–10. doi: 10.1016/j.jinsphys.2014.12.005. PubMed DOI
Rumpold B.A., Schlüter O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013;57:802–823. doi: 10.1002/mnfr.201200735. PubMed DOI
IPIFF . Contribution Paper on the Application of the EU Feed Hygiene Package to the Production of Insects. International Platform of Insects for Food and Feed (IPIFF); Brussels, Belgium: 2019. [(accessed on 9 June 2025)]. Available online: https://ipiff.org.
Choi Y.-H., Kim J.-E., Jung H.-J., Cho E.S., Kim D.-W., Kim J.-S. Effects of Hermetia illucens supplementation on fecal score, blood profiles, immune response, and small intestinal morphology in weaned pigs. J. Korea Acad.-Ind. Coop. Soc. 2020;21:392–399. doi: 10.5762/KAIS.2020.21.4.392. DOI
Dörper A., Berman H.M., Gort G., van Harn J., Dicke M., Veldkamp T. Effects of different black soldier fly larvae products on slow-growing broiler performance and carcass characteristics. Insects. 2024;15:103481. doi: 10.1016/j.psj.2024.103481. PubMed DOI PMC
Boontiam W., Hong J., Kitipongpysan S., Wattanachai S. Full-fat field cricket (Gryllus bimaculatus) as a substitute for fish meal and soybean meal for weaning piglets: Effects on growth performance, intestinal health, and redox status. J. Anim. Sci. 2022;100:skac080. doi: 10.1093/jas/skac080. PubMed DOI PMC
Hervás G., Toral P.G., Labbouz Y., Baila C., Boussalia Y., Frutos P. Replacing soybean meal with house cricket (Acheta domesticus) meal in ruminant diet: Effects on ruminal fermentation, degradation, and biohydrogenation. J. Insects Food Feed. 2024;11:921–936. doi: 10.1163/23524588-00001337. DOI
Cotton R.T. The Meal Worms. U.S. Department of Agriculture; Washington, DC, USA: 1929. DOI
Ichikawa T., Kurauchi T. Larval cannibalism and pupal defense against cannibalism in two species of tenebrionid beetles. Zoolog. Sci. 2009;26:525–529. doi: 10.2108/zsj.26.525. PubMed DOI
Rashidi Ilzoleh R., Akmali V. Cannibalistic behavior of the yellow mealworm (Tenebrio molitor Linnaeus, 1758) under laboratory condition. Appl. Biol. 2023;36:62–80. doi: 10.22051/jab.2023.41414.1506. DOI
Asendorf T., Wind C., Rullmann A., Vilcinskas A. Comparison of DNA-based methods for the detection of meat feeding in Alphitobius diaperinus larvae. J. Insects Food Feed. 2025;1:1–12. doi: 10.1163/23524588-00001385. DOI
Ramos-Elorduy J., González E.A., Hernández A.R., Pino J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Entomol. Circ. 2002;95:214–220. doi: 10.1603/0022-0493-95.1.214. PubMed DOI
Ruschioni S., Loreto N., Foligni R., Mannozzi C., Raffaelli N., Zamporlini F., Pasquini M., Roncolini A., Cardinali F., Osimani A., et al. Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) larvae. Foods. 2020;9:317. doi: 10.3390/foods9030317. PubMed DOI PMC
Aguilar-Miranda E.D., López M.G., Escamilla-Santana C., Barba de la Rosa A.P. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. J. Agric. Food Chem. 2002;50:192–195. doi: 10.1021/jf010691y. PubMed DOI
Morales-Ramos J.A., Rojas M.G., Coudron T.A., Huynh M.P., Zou D., Shelby K.S. Mass Production of Beneficial Organisms. Elsevier; Amsterdam, The Netherlands: 2023. Artificial diet development for entomophagous arthropods; pp. 233–260. DOI
Akiyama D., Kaewplik T., Sasaki Y. Investigation of the usefulness of two-spotted cricket (Gryllus bimaculatus) feed using two-spotted cricket (Gryllus bimaculatus) powder to replace fishmeal. J. Insects Food Feed. 2024;10:1037–1041. doi: 10.1163/23524588-20230177. DOI
Dobermann D., Swift J.A., Field L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017;42:293–308. doi: 10.1111/nbu.12291. DOI
Mancini S., Moruzzo R., Riccioli F., Paci G. European consumers’ readiness to adopt insects as food. A review. Food Res. Int. 2019;122:661–678. doi: 10.1016/j.foodres.2019.01.041. PubMed DOI
Garino C., Zagon J., Tavoletti S., Roncolini A., Milanović V., Cardinali F., Maoloni A., Ndagijimana M., Pasquini M., Clementi F. Development and validation of a novel real-time PCR protocol for the detection of buffalo worm (Alphitobius diaperinus) in food. Food Control. 2022;140:109138. doi: 10.1016/j.foodcont.2022.109138. DOI
Kim M.-J., Kim J.-H., Kim H.-Y. Development and validation of ultrafast PCR assays to detect six species of edible insects. Food Control. 2019;103:21–26. doi: 10.1016/j.foodcont.2019.03.039. DOI
Köppel R., Ruf J., Rentsch J., Zimmerli F. Multiplex real-time PCR for the detection of insect DNA and determination of contents of Tenebrio molitor, Locusta migratoria and Acheta domestica in food. Eur. Food Res. Technol. 2019;245:559–567. doi: 10.1007/s00217-018-03225-5. DOI
Sadykova E.O., Tyshko N.V., Nikitin N.S., Trebukh M.D., Shestakova S.I. Monitoring methods for novel insect-derived food: The PCR protocol for the detection and identification of Hermetia illucens insects based on the HEI-COI probe and primer system. Vopr. Pitan. 2022;92:36–44. doi: 10.33029/0042-8833-2023-92-1-36-44. PubMed DOI
Tramuta C., Gallina S., Bellio A., Bianchi D.M., Chiesa F., Rubiola S., Romano A., Decastelli L. A set of multiplex polymerase chain reactions for genomic detection of nine edible insect species in foods. J. Insect Sci. 2018;18:3. doi: 10.1093/jisesa/iey087. PubMed DOI PMC
Zagon J., Di Rienzo V., Potkura J., Lampen A., Braeuning A. A real-time PCR method for the detection of black soldier fly (Hermetia illucens) in feedstuff. Food Control. 2018;91:440–448. doi: 10.1016/j.foodcont.2018.04.032. DOI
Daniso E., Tulli F., Cardinaletti G., Cerri R., Tibaldi E. Molecular approach for insect detection in feed and food: The case of Gryllodes sigillatus. Eur. Food Res. Technol. 2020;246:2373–2381. doi: 10.1007/s00217-020-03573-1. DOI
Jilkova D., Marien A., Hulin J., Zdenkova K., Fumiere O., Cermakova E., Berben G., Debode F. Detection of Acheta domesticus by real-time PCR in food and feed. J. Insects Food Feed. 2024;10:1645–1660. doi: 10.1163/23524588-00001067. DOI
Hillinger S., Weitzel J., Meyer M., Pabel J., Busch U., Hochegger R. Development of a DNA metabarcoding method for the identification of insects in food. Foods. 2023;12:1086. doi: 10.3390/foods12051086. PubMed DOI PMC
Debode F., Janssen E., Bragard C., Berben G. Development of real-time PCR tests for the detection of Tenebrio molitor in food and feed. Food Addit. Contam. Part A. 2017;34:1421–1426. doi: 10.1080/19440049.2017.1320811. PubMed DOI
Marien A., Hulin J., Zdenkova K., Cermakova E., Fumiere O., Berben G., Debode F. Detection of Alphitobius diaperinus by real-time polymerase chain reaction with a single-copy gene target. Front. Vet. Sci. 2022;9:718806. doi: 10.3389/fvets.2022.718806. PubMed DOI PMC
Marien A., Dewulf J., Huyghebaert B., Mertens J., Smagghe G. Detection of Bombyx mori as a Protein Source in Feedingstuffs by Real-Time PCR with a Single-Copy Gene Target. Agriculture. 2024;14:1996. doi: 10.3390/agriculture14111996. DOI
Pava-Ripoll M., Miller A.K., Loechelt-Yoshioka H.K., Ziobro G.C., Ferguson M. Detection limits of insect fragments in spiked whole wheat flour using multiplex polymerase chain reaction (PCR) J. Food Prot. 2024;87:100348. doi: 10.1016/j.jfp.2024.100348. PubMed DOI
Wildbacher M., Andronache J., Pühringer K., Dobrovolny S., Hochegger R., Cichna-Markl M. Authentication of EU-authorized edible insect species in food products by DNA barcoding and high-resolution melting (HRM) analysis. Foods. 2025;14:751. doi: 10.3390/foods14050751. PubMed DOI PMC
McNair J.N., Frobish D., Rediske R., Hart J., Jamison M., Szlag D. The theoretical basis of qPCR and ddPCR copy number estimates: A critical review and exposition. Water. 2025;17:381. doi: 10.3390/w17030381. DOI
Zhao J., Yang W., Cai H., Cao G., Li Z. Current progress and future trends of genomics-based techniques for food adulteration identification. Foods. 2025;14:1116. doi: 10.3390/foods14071116. PubMed DOI PMC
Zink F.A., Tembrock L.R., Timm A.E., Farris R.E., Perera O.P., Gilligan T.M. A droplet digital PCR (ddPCR) assay to detect Helicoverpa armigera (Lepidoptera: Noctuidae) in bulk trap samples. PLoS ONE. 2017;12:e0178704. doi: 10.1371/journal.pone.0178704. PubMed DOI PMC
Zink F.A., Tembrock L.R., Timm A.E., Gilligan T.M. A duplex ddPCR assay for simultaneously detecting Ips sexdentatus and Ips typographus (Coleoptera: Curculionidae) in bulk trap samples. Can. J. For. Res. 2019;48:903–914. doi: 10.1139/cjfr-2019-0047. DOI
Cottenet G., Blancpain C., Chuah P.F., Cavin C. Evaluation and application of a next generation sequencing approach for meat species identification. Food Control. 2020;110:107003. doi: 10.1016/j.foodcont.2019.107003. DOI
Haynes E., Jimenez E., Pardo M.A., Helyar S.J. The future of NGS (next generation sequencing) analysis in testing food authenticity. Food Control. 2019;101:134–143. doi: 10.1016/j.foodcont.2019.02.010. DOI
Mann D., Crowley L.M., Recalde N.M., Darwin Tree of Life Consortium The genome sequence of the yellow mealworm beetle, Tenebrio molitor Linnaeus, 1758. Wellcome Open Res. 2024;9:459. doi: 10.12688/wellcomeopenres.22863.1. PubMed DOI PMC
Dossey A.T., Oppert B., Chu F.C., Lorenzen M.D., Scheffler B., Simpson S., Ide K. Genome and genetic engineering of the house cricket (Acheta domesticus): A resource for sustainable agriculture. Biomolecules. 2023;13:589. doi: 10.3390/biom13040589. PubMed DOI PMC
Huang W.D., Zhu P., Zhao Z., Yang C., Duan Y., Zhou J., Cai W. Metabarcoding of gut content reveals the trophic interactions and dietary breadth of an artificially released generalist predator in agricultural landscapes. arXiv. 2024 doi: 10.22541/au.173434721.15788486/v1.5177103 DOI
Sacco-Martret de Préville A., Staudacher K., Traugott M., Bohan D.A., Plantegenest M., Canard E. Prey switching and natural pest control potential of carabid communities over the winter wheat cropping season. Insects. 2024;15:610. doi: 10.3390/insects15080610. PubMed DOI PMC
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Messing J. New M13 Vectors for Cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Sayers E.W., Beck J., Bolton E.E., Brister J.R., Chan J., Connor R., Feldgarden M., Fine A.M., Funk K., Hoffman J., et al. Database resources of the National Center for Biotechnology Information in 2025. Nucleic Acids Res. 2025;53:D20–D29. doi: 10.1093/nar/gkae979. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2025. [(accessed on 23 July 2025)]. Available online: https://www.R-project.org/
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Park J.B., Choi W.H., Kim S.H., Jin H.J., Han Y.S., Lee Y.S., Kim N.J. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. Int. J. Ind. Entomol. Biomater. 2014;28:5–9. doi: 10.7852/ijie.2014.28.1.5. DOI
Mirzaeva D.A., Khujamshukurov N.A., Zokirov B., Soxibov B.O., Kuchkarova D. Influence of temperature and humidity on the development of Tenebrio molitor L. Int. J. Curr. Microbiol. Appl. Sci. 2020;9:3544–3559. doi: 10.20546/ijcmas.2020.905.422. DOI
Jankauskienė A., Aleknavičius D., Kiseliovienė S., Antanaitis Š., Falkauskas R., Šumskienė M., Kabašinskienė A. The influence of different sustainable substrates on the nutritional value of Tenebrio molitor larvae. Foods. 2024;13:365. doi: 10.3390/foods13030365. PubMed DOI PMC
Molnár Á., Abigeal T.O., Fehér M. Investigation of the production parameters, nutrient and mineral composition of mealworm (Tenebrio molitor) larvae grown on different substrates. Acta Agrar. Debr. 2022;1:129–133. doi: 10.34101/actaagrar/1/10418. DOI
Lienhard A., Rehorska R., Pöllinger-Zierler B., Mayer C., Grasser M., Berner S. Future proteins: Sustainable diets for Tenebrio molitor rearing composed of food by-products. Foods. 2023;12:4092. doi: 10.3390/foods12224092. PubMed DOI PMC
Ferri I., Dell’Anno M., Spano M., Canala B., Petrali B., Dametti M., Rossi L. Characterisation of Tenebrio molitor reared on substrates supplemented with chestnut shell. Insects. 2024;15:512. doi: 10.3390/insects15070512. PubMed DOI PMC
Tsochatzis E., Berggreen I.E., Tedeschi F., Ntrallou K., Gika H., Corredig M. Gut microbiome and degradation product formation during biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies. Molecules. 2021;26:7568. doi: 10.3390/molecules26247568. PubMed DOI PMC
Ratnasingham S., Hebert P.D.N. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org. ) Mol. Ecol. Notes. 2007;7:355–364. doi: 10.1111/j.1471-8286.2007.01678.x. PubMed DOI PMC
Larsen W.J. Genesis of mitochondria in insect fat body. J. Cell Biol. 1970;47:373–383. doi: 10.1083/jcb.47.2.373. PubMed DOI PMC
Hou Y., Chen S., Zheng Y., Zheng X., Lin J.M. Droplet-based digital PCR (ddPCR) and its applications. TrAC Trends Anal. Chem. 2023;158:116897. doi: 10.1016/j.trac.2022.116897. DOI
Basanisi M.G., La Bella G., Nobili G., Coppola R., Damato A.M., Cafiero M.A., La Salandra G. Application of the novel droplet digital PCR technology for identification of meat species. Int. J. Food Sci. Technol. 2020;55:1145–1150. doi: 10.1111/ijfs.14486. DOI
He C., Bai L., Chen Y., Jiang W., Jia J., Pan A., Wu X. Detection and quantification of adulterated beef and mutton products by multiplex droplet digital PCR. Foods. 2022;11:3034. doi: 10.3390/foods11193034. PubMed DOI PMC
Ren J., Deng T., Huang W., Chen Y., Ge Y. A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food. PLoS ONE. 2017;12:e0173567. doi: 10.1371/journal.pone.0173567. PubMed DOI PMC
Hamaguchi M., Shimabukuro H., Hori M., Yoshida G., Terada T., Miyajima T. Quantitative real-time polymerase chain reaction (PCR) and droplet digital PCR duplex assays for detecting Zostera marina DNA in coastal sediments. Limnol. Oceanogr. Methods. 2018;16:253–264. doi: 10.1002/lom3.10242. DOI
Teruel M., Ruíz-Ruano F.J., Marchal J.A., Sánchez A., Cabrero J., Camacho J.P., Perfectti F. Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans. Heredity. 2014;112:531–542. doi: 10.1038/hdy.2013.135. PubMed DOI PMC
Sammarco B.C., Hinkle N.C., Crossley M.S. Biology and management of lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) in broiler houses. J. Integr. Pest Manag. 2023;14:2. doi: 10.1093/jipm/pmad003. DOI
Egonyu J.P., Labu S., Nyangena D.N., Khamis F., Cheseto X., Tanga C.M., Subramanian S. Pre-harvest starvation effects on microbial load, weight loss and proximate composition of edible field cricket (Gryllus bimaculatus) and desert locust (Schistocerca gregaria) Int. J. Trop. Insect Sci. 2025:1–9. doi: 10.1007/s42690-025-01478-8. DOI
Gałęcki R., Bakuła T., Gołaszewski J. Foodborne diseases in the edible insect industry in Europe—New challenges and old problems. Foods. 2023;12:770. doi: 10.3390/foods12040770. PubMed DOI PMC
Inácio A.C., Vågsholm I., Jansson A., Vaga M., Boqvist S., Fraqueza M.J. Impact of starvation on fat content and microbial load in edible crickets (Acheta domesticus) J. Insects Food Feed. 2021;7:1143–1148. doi: 10.3920/JIFF2020.0157. DOI