Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity

. 2025 Jul 28 ; 16 (8) : . [epub] 20250728

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40870577

Grantová podpora
QK23020101 National Agency for Agricultural Research of the Ministry of Agriculture of the Czech Republic
SV24-14-21360 Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague

Due to their nutritional value and sustainability, edible insect-based foods are gaining popularity in Europe. Their use is regulated by EU legislation, which defines authorised species and sets labelling requirements. Molecular tools are being developed to authenticate such products. In this study, yellow mealworm (Tenebrio molitor) larvae authorised for human consumption were fed wheat flour-based diets containing varying proportions of house cricket (Acheta domesticus) flour for 21 days. This was followed by a 48 h starvation period to assess the persistence of insect DNA in the digestive tract. Two novel, species-specific, single-copy markers were designed: ampd gene for the Acheta domesticus and MyD88 gene for the Tenebrio molitor. These were applied using qPCR and ddPCR. Both methods successfully detected cricket DNA in the guts of starved larvae. Linear regression analysis revealed a strong, statistically significant correlation between the proportion of Acheta domesticus flour in the diet and the normalised relative quantity of DNA. ddPCR proved to be more sensitive than qPCR, particularly in the detection of low DNA levels. These results suggest that the presence of DNA from undeclared insect species in edible insects may be indicative of their diet rather than contamination or adulteration. This highlights the importance of contextual interpretation in food authenticity testing.

Zobrazit více v PubMed

Van Huis A., van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P. Edible Insects: Future Prospects for Food and Feed Security. Food and Agriculture Organization of the United Nations; Rome, Italy: 2013.

Kłobukowski F., Śmiechowska M., Skotnicka M. Edible insects from the perspective of sustainability—A review of the hazards and benefits. Foods. 2025;14:1382. doi: 10.3390/foods14081382. PubMed DOI PMC

Aleknavičius D., Lukša J., Strazdaitė-Žielienė Ž., Servienė E. The bacterial microbiota of edible insects Acheta domesticus and Gryllus assimilis revealed by high content analysis. Foods. 2022;11:1073. doi: 10.3390/foods11081073. PubMed DOI PMC

Churchward-Venne T.A., Pinckaers P.J.M., van Loon J.J.A., van Loon L.J.C. Consideration of insects as a source of dietary protein for human consumption. Nutr. Rev. 2017;75:1035–1045. doi: 10.1093/nutrit/nux057. PubMed DOI

Nowak V., Persijn D., Rittenschober D., Charrondiere U.R. Review of food composition data for edible insects. Food Chem. 2016;193:39–46. doi: 10.1016/j.foodchem.2014.10.114. PubMed DOI

Yoo J.S., Cho K.H., Hong J.S., Jang H.S., Chung Y.H., Kwon G.T., Shin D.G., Kim Y.Y. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas. J. Anim. Sci. 2018;32:387–394. doi: 10.5713/ajas.18.0647. PubMed DOI PMC

Song Y., Kim M., Moon C., Seo D., Han Y.S., Jo Y.H., Noh M.Y., Park Y., Kim S., Kim Y.W., et al. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio Molitor. Entomol. Res. 2018;48:227–233. doi: 10.1111/1748-5967.12304. DOI

Van Broekhoven S., Oonincx D.G.A.B., Van Huis A., Van Loon J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015;73:1–10. doi: 10.1016/j.jinsphys.2014.12.005. PubMed DOI

Rumpold B.A., Schlüter O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013;57:802–823. doi: 10.1002/mnfr.201200735. PubMed DOI

IPIFF . Contribution Paper on the Application of the EU Feed Hygiene Package to the Production of Insects. International Platform of Insects for Food and Feed (IPIFF); Brussels, Belgium: 2019. [(accessed on 9 June 2025)]. Available online: https://ipiff.org.

Choi Y.-H., Kim J.-E., Jung H.-J., Cho E.S., Kim D.-W., Kim J.-S. Effects of Hermetia illucens supplementation on fecal score, blood profiles, immune response, and small intestinal morphology in weaned pigs. J. Korea Acad.-Ind. Coop. Soc. 2020;21:392–399. doi: 10.5762/KAIS.2020.21.4.392. DOI

Dörper A., Berman H.M., Gort G., van Harn J., Dicke M., Veldkamp T. Effects of different black soldier fly larvae products on slow-growing broiler performance and carcass characteristics. Insects. 2024;15:103481. doi: 10.1016/j.psj.2024.103481. PubMed DOI PMC

Boontiam W., Hong J., Kitipongpysan S., Wattanachai S. Full-fat field cricket (Gryllus bimaculatus) as a substitute for fish meal and soybean meal for weaning piglets: Effects on growth performance, intestinal health, and redox status. J. Anim. Sci. 2022;100:skac080. doi: 10.1093/jas/skac080. PubMed DOI PMC

Hervás G., Toral P.G., Labbouz Y., Baila C., Boussalia Y., Frutos P. Replacing soybean meal with house cricket (Acheta domesticus) meal in ruminant diet: Effects on ruminal fermentation, degradation, and biohydrogenation. J. Insects Food Feed. 2024;11:921–936. doi: 10.1163/23524588-00001337. DOI

Cotton R.T. The Meal Worms. U.S. Department of Agriculture; Washington, DC, USA: 1929. DOI

Ichikawa T., Kurauchi T. Larval cannibalism and pupal defense against cannibalism in two species of tenebrionid beetles. Zoolog. Sci. 2009;26:525–529. doi: 10.2108/zsj.26.525. PubMed DOI

Rashidi Ilzoleh R., Akmali V. Cannibalistic behavior of the yellow mealworm (Tenebrio molitor Linnaeus, 1758) under laboratory condition. Appl. Biol. 2023;36:62–80. doi: 10.22051/jab.2023.41414.1506. DOI

Asendorf T., Wind C., Rullmann A., Vilcinskas A. Comparison of DNA-based methods for the detection of meat feeding in Alphitobius diaperinus larvae. J. Insects Food Feed. 2025;1:1–12. doi: 10.1163/23524588-00001385. DOI

Ramos-Elorduy J., González E.A., Hernández A.R., Pino J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Entomol. Circ. 2002;95:214–220. doi: 10.1603/0022-0493-95.1.214. PubMed DOI

Ruschioni S., Loreto N., Foligni R., Mannozzi C., Raffaelli N., Zamporlini F., Pasquini M., Roncolini A., Cardinali F., Osimani A., et al. Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) larvae. Foods. 2020;9:317. doi: 10.3390/foods9030317. PubMed DOI PMC

Aguilar-Miranda E.D., López M.G., Escamilla-Santana C., Barba de la Rosa A.P. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. J. Agric. Food Chem. 2002;50:192–195. doi: 10.1021/jf010691y. PubMed DOI

Morales-Ramos J.A., Rojas M.G., Coudron T.A., Huynh M.P., Zou D., Shelby K.S. Mass Production of Beneficial Organisms. Elsevier; Amsterdam, The Netherlands: 2023. Artificial diet development for entomophagous arthropods; pp. 233–260. DOI

Akiyama D., Kaewplik T., Sasaki Y. Investigation of the usefulness of two-spotted cricket (Gryllus bimaculatus) feed using two-spotted cricket (Gryllus bimaculatus) powder to replace fishmeal. J. Insects Food Feed. 2024;10:1037–1041. doi: 10.1163/23524588-20230177. DOI

Dobermann D., Swift J.A., Field L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017;42:293–308. doi: 10.1111/nbu.12291. DOI

Mancini S., Moruzzo R., Riccioli F., Paci G. European consumers’ readiness to adopt insects as food. A review. Food Res. Int. 2019;122:661–678. doi: 10.1016/j.foodres.2019.01.041. PubMed DOI

Garino C., Zagon J., Tavoletti S., Roncolini A., Milanović V., Cardinali F., Maoloni A., Ndagijimana M., Pasquini M., Clementi F. Development and validation of a novel real-time PCR protocol for the detection of buffalo worm (Alphitobius diaperinus) in food. Food Control. 2022;140:109138. doi: 10.1016/j.foodcont.2022.109138. DOI

Kim M.-J., Kim J.-H., Kim H.-Y. Development and validation of ultrafast PCR assays to detect six species of edible insects. Food Control. 2019;103:21–26. doi: 10.1016/j.foodcont.2019.03.039. DOI

Köppel R., Ruf J., Rentsch J., Zimmerli F. Multiplex real-time PCR for the detection of insect DNA and determination of contents of Tenebrio molitor, Locusta migratoria and Acheta domestica in food. Eur. Food Res. Technol. 2019;245:559–567. doi: 10.1007/s00217-018-03225-5. DOI

Sadykova E.O., Tyshko N.V., Nikitin N.S., Trebukh M.D., Shestakova S.I. Monitoring methods for novel insect-derived food: The PCR protocol for the detection and identification of Hermetia illucens insects based on the HEI-COI probe and primer system. Vopr. Pitan. 2022;92:36–44. doi: 10.33029/0042-8833-2023-92-1-36-44. PubMed DOI

Tramuta C., Gallina S., Bellio A., Bianchi D.M., Chiesa F., Rubiola S., Romano A., Decastelli L. A set of multiplex polymerase chain reactions for genomic detection of nine edible insect species in foods. J. Insect Sci. 2018;18:3. doi: 10.1093/jisesa/iey087. PubMed DOI PMC

Zagon J., Di Rienzo V., Potkura J., Lampen A., Braeuning A. A real-time PCR method for the detection of black soldier fly (Hermetia illucens) in feedstuff. Food Control. 2018;91:440–448. doi: 10.1016/j.foodcont.2018.04.032. DOI

Daniso E., Tulli F., Cardinaletti G., Cerri R., Tibaldi E. Molecular approach for insect detection in feed and food: The case of Gryllodes sigillatus. Eur. Food Res. Technol. 2020;246:2373–2381. doi: 10.1007/s00217-020-03573-1. DOI

Jilkova D., Marien A., Hulin J., Zdenkova K., Fumiere O., Cermakova E., Berben G., Debode F. Detection of Acheta domesticus by real-time PCR in food and feed. J. Insects Food Feed. 2024;10:1645–1660. doi: 10.1163/23524588-00001067. DOI

Hillinger S., Weitzel J., Meyer M., Pabel J., Busch U., Hochegger R. Development of a DNA metabarcoding method for the identification of insects in food. Foods. 2023;12:1086. doi: 10.3390/foods12051086. PubMed DOI PMC

Debode F., Janssen E., Bragard C., Berben G. Development of real-time PCR tests for the detection of Tenebrio molitor in food and feed. Food Addit. Contam. Part A. 2017;34:1421–1426. doi: 10.1080/19440049.2017.1320811. PubMed DOI

Marien A., Hulin J., Zdenkova K., Cermakova E., Fumiere O., Berben G., Debode F. Detection of Alphitobius diaperinus by real-time polymerase chain reaction with a single-copy gene target. Front. Vet. Sci. 2022;9:718806. doi: 10.3389/fvets.2022.718806. PubMed DOI PMC

Marien A., Dewulf J., Huyghebaert B., Mertens J., Smagghe G. Detection of Bombyx mori as a Protein Source in Feedingstuffs by Real-Time PCR with a Single-Copy Gene Target. Agriculture. 2024;14:1996. doi: 10.3390/agriculture14111996. DOI

Pava-Ripoll M., Miller A.K., Loechelt-Yoshioka H.K., Ziobro G.C., Ferguson M. Detection limits of insect fragments in spiked whole wheat flour using multiplex polymerase chain reaction (PCR) J. Food Prot. 2024;87:100348. doi: 10.1016/j.jfp.2024.100348. PubMed DOI

Wildbacher M., Andronache J., Pühringer K., Dobrovolny S., Hochegger R., Cichna-Markl M. Authentication of EU-authorized edible insect species in food products by DNA barcoding and high-resolution melting (HRM) analysis. Foods. 2025;14:751. doi: 10.3390/foods14050751. PubMed DOI PMC

McNair J.N., Frobish D., Rediske R., Hart J., Jamison M., Szlag D. The theoretical basis of qPCR and ddPCR copy number estimates: A critical review and exposition. Water. 2025;17:381. doi: 10.3390/w17030381. DOI

Zhao J., Yang W., Cai H., Cao G., Li Z. Current progress and future trends of genomics-based techniques for food adulteration identification. Foods. 2025;14:1116. doi: 10.3390/foods14071116. PubMed DOI PMC

Zink F.A., Tembrock L.R., Timm A.E., Farris R.E., Perera O.P., Gilligan T.M. A droplet digital PCR (ddPCR) assay to detect Helicoverpa armigera (Lepidoptera: Noctuidae) in bulk trap samples. PLoS ONE. 2017;12:e0178704. doi: 10.1371/journal.pone.0178704. PubMed DOI PMC

Zink F.A., Tembrock L.R., Timm A.E., Gilligan T.M. A duplex ddPCR assay for simultaneously detecting Ips sexdentatus and Ips typographus (Coleoptera: Curculionidae) in bulk trap samples. Can. J. For. Res. 2019;48:903–914. doi: 10.1139/cjfr-2019-0047. DOI

Cottenet G., Blancpain C., Chuah P.F., Cavin C. Evaluation and application of a next generation sequencing approach for meat species identification. Food Control. 2020;110:107003. doi: 10.1016/j.foodcont.2019.107003. DOI

Haynes E., Jimenez E., Pardo M.A., Helyar S.J. The future of NGS (next generation sequencing) analysis in testing food authenticity. Food Control. 2019;101:134–143. doi: 10.1016/j.foodcont.2019.02.010. DOI

Mann D., Crowley L.M., Recalde N.M., Darwin Tree of Life Consortium The genome sequence of the yellow mealworm beetle, Tenebrio molitor Linnaeus, 1758. Wellcome Open Res. 2024;9:459. doi: 10.12688/wellcomeopenres.22863.1. PubMed DOI PMC

Dossey A.T., Oppert B., Chu F.C., Lorenzen M.D., Scheffler B., Simpson S., Ide K. Genome and genetic engineering of the house cricket (Acheta domesticus): A resource for sustainable agriculture. Biomolecules. 2023;13:589. doi: 10.3390/biom13040589. PubMed DOI PMC

Huang W.D., Zhu P., Zhao Z., Yang C., Duan Y., Zhou J., Cai W. Metabarcoding of gut content reveals the trophic interactions and dietary breadth of an artificially released generalist predator in agricultural landscapes. arXiv. 2024 doi: 10.22541/au.173434721.15788486/v1.5177103 DOI

Sacco-Martret de Préville A., Staudacher K., Traugott M., Bohan D.A., Plantegenest M., Canard E. Prey switching and natural pest control potential of carabid communities over the winter wheat cropping season. Insects. 2024;15:610. doi: 10.3390/insects15080610. PubMed DOI PMC

Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC

Messing J. New M13 Vectors for Cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.

Sayers E.W., Beck J., Bolton E.E., Brister J.R., Chan J., Connor R., Feldgarden M., Fine A.M., Funk K., Hoffman J., et al. Database resources of the National Center for Biotechnology Information in 2025. Nucleic Acids Res. 2025;53:D20–D29. doi: 10.1093/nar/gkae979. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2025. [(accessed on 23 July 2025)]. Available online: https://www.R-project.org/

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Park J.B., Choi W.H., Kim S.H., Jin H.J., Han Y.S., Lee Y.S., Kim N.J. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. Int. J. Ind. Entomol. Biomater. 2014;28:5–9. doi: 10.7852/ijie.2014.28.1.5. DOI

Mirzaeva D.A., Khujamshukurov N.A., Zokirov B., Soxibov B.O., Kuchkarova D. Influence of temperature and humidity on the development of Tenebrio molitor L. Int. J. Curr. Microbiol. Appl. Sci. 2020;9:3544–3559. doi: 10.20546/ijcmas.2020.905.422. DOI

Jankauskienė A., Aleknavičius D., Kiseliovienė S., Antanaitis Š., Falkauskas R., Šumskienė M., Kabašinskienė A. The influence of different sustainable substrates on the nutritional value of Tenebrio molitor larvae. Foods. 2024;13:365. doi: 10.3390/foods13030365. PubMed DOI PMC

Molnár Á., Abigeal T.O., Fehér M. Investigation of the production parameters, nutrient and mineral composition of mealworm (Tenebrio molitor) larvae grown on different substrates. Acta Agrar. Debr. 2022;1:129–133. doi: 10.34101/actaagrar/1/10418. DOI

Lienhard A., Rehorska R., Pöllinger-Zierler B., Mayer C., Grasser M., Berner S. Future proteins: Sustainable diets for Tenebrio molitor rearing composed of food by-products. Foods. 2023;12:4092. doi: 10.3390/foods12224092. PubMed DOI PMC

Ferri I., Dell’Anno M., Spano M., Canala B., Petrali B., Dametti M., Rossi L. Characterisation of Tenebrio molitor reared on substrates supplemented with chestnut shell. Insects. 2024;15:512. doi: 10.3390/insects15070512. PubMed DOI PMC

Tsochatzis E., Berggreen I.E., Tedeschi F., Ntrallou K., Gika H., Corredig M. Gut microbiome and degradation product formation during biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies. Molecules. 2021;26:7568. doi: 10.3390/molecules26247568. PubMed DOI PMC

Ratnasingham S., Hebert P.D.N. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org. ) Mol. Ecol. Notes. 2007;7:355–364. doi: 10.1111/j.1471-8286.2007.01678.x. PubMed DOI PMC

Larsen W.J. Genesis of mitochondria in insect fat body. J. Cell Biol. 1970;47:373–383. doi: 10.1083/jcb.47.2.373. PubMed DOI PMC

Hou Y., Chen S., Zheng Y., Zheng X., Lin J.M. Droplet-based digital PCR (ddPCR) and its applications. TrAC Trends Anal. Chem. 2023;158:116897. doi: 10.1016/j.trac.2022.116897. DOI

Basanisi M.G., La Bella G., Nobili G., Coppola R., Damato A.M., Cafiero M.A., La Salandra G. Application of the novel droplet digital PCR technology for identification of meat species. Int. J. Food Sci. Technol. 2020;55:1145–1150. doi: 10.1111/ijfs.14486. DOI

He C., Bai L., Chen Y., Jiang W., Jia J., Pan A., Wu X. Detection and quantification of adulterated beef and mutton products by multiplex droplet digital PCR. Foods. 2022;11:3034. doi: 10.3390/foods11193034. PubMed DOI PMC

Ren J., Deng T., Huang W., Chen Y., Ge Y. A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food. PLoS ONE. 2017;12:e0173567. doi: 10.1371/journal.pone.0173567. PubMed DOI PMC

Hamaguchi M., Shimabukuro H., Hori M., Yoshida G., Terada T., Miyajima T. Quantitative real-time polymerase chain reaction (PCR) and droplet digital PCR duplex assays for detecting Zostera marina DNA in coastal sediments. Limnol. Oceanogr. Methods. 2018;16:253–264. doi: 10.1002/lom3.10242. DOI

Teruel M., Ruíz-Ruano F.J., Marchal J.A., Sánchez A., Cabrero J., Camacho J.P., Perfectti F. Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans. Heredity. 2014;112:531–542. doi: 10.1038/hdy.2013.135. PubMed DOI PMC

Sammarco B.C., Hinkle N.C., Crossley M.S. Biology and management of lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) in broiler houses. J. Integr. Pest Manag. 2023;14:2. doi: 10.1093/jipm/pmad003. DOI

Egonyu J.P., Labu S., Nyangena D.N., Khamis F., Cheseto X., Tanga C.M., Subramanian S. Pre-harvest starvation effects on microbial load, weight loss and proximate composition of edible field cricket (Gryllus bimaculatus) and desert locust (Schistocerca gregaria) Int. J. Trop. Insect Sci. 2025:1–9. doi: 10.1007/s42690-025-01478-8. DOI

Gałęcki R., Bakuła T., Gołaszewski J. Foodborne diseases in the edible insect industry in Europe—New challenges and old problems. Foods. 2023;12:770. doi: 10.3390/foods12040770. PubMed DOI PMC

Inácio A.C., Vågsholm I., Jansson A., Vaga M., Boqvist S., Fraqueza M.J. Impact of starvation on fat content and microbial load in edible crickets (Acheta domesticus) J. Insects Food Feed. 2021;7:1143–1148. doi: 10.3920/JIFF2020.0157. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...