Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Rashba semiconductors
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27767052
PubMed Central
PMC5078730
DOI
10.1038/ncomms13071
PII: ncomms13071
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Entanglement of the spin-orbit and magnetic order in multiferroic materials bears a strong potential for engineering novel electronic and spintronic devices. Here, we explore the electron and spin structure of ferroelectric α-GeTe thin films doped with ferromagnetic Mn impurities to achieve its multiferroic functionality. We use bulk-sensitive soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to follow hybridization of the GeTe valence band with the Mn dopants. We observe a gradual opening of the Zeeman gap in the bulk Rashba bands around the Dirac point with increase of the Mn concentration, indicative of the ferromagnetic order, at persistent Rashba splitting. Furthermore, subtle details regarding the spin-orbit and magnetic order entanglement are deduced from spin-resolved ARPES measurements. We identify antiparallel orientation of the ferroelectric and ferromagnetic polarization, and altering of the Rashba-type spin helicity by magnetic switching. Our experimental results are supported by first-principles calculations of the electron and spin structure.
Department of Chemistry Ludwig Maximillian University 81377 Munich Germany
Institut für Halbleiter und Festkörperphysik Johannes Kepler Universität A 4040 Linz Austria
Institute of Physics École Polytechnique Fédérale de Lausanne CH 1015 Lausanne Switzerland
National Technical University Kharkiv Polytechnic Institute Frunze Str 21 61002 Kharkiv Ukraine
New Technologies Research Center University of West Bohemia Plzeň Czech Republic
SOLEIL Synchrotron L'Orme des Merisiers F 91192 Gif sur Yvette France
Swiss Light Source Paul Scherrer Institut CH 5232 Villigen PSI Switzerland
Zobrazit více v PubMed
Chappert C., Fert A. & Nguyen Van Dau F. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007). PubMed
Mihai Miron I. et al.. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010). PubMed
Bychkov Y. A. & Rashba E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).
Hasan M. Z. & Kane C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Murakami S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).
Mourik V. et al.. Signatures of majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012). PubMed
Beenakker C. W. J. Search for majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).
Przybylińska H. et al.. Magnetic-field-induced ferroelectric polarization reversal in the multiferroic Ge1−xMnxTe semiconductor. Phys. Rev. Lett. 112, 047202 (2014). PubMed
Eerenstein W., Mathur N. D. & Scott J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). PubMed
Ramesh R. & Spaldin N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007). PubMed
Tokura Y. & Seki S. Multiferroics with spiral spin orders. Adv. Mater. 22, 1554–1565 (2010). PubMed
Di Sante D., Barone P., Bertacco R. & Picozzi S. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 25, 509–513 (2013). PubMed
Liebmann M. et al.. Giant Rashba-type spin splitting in ferroelectric GeTe(111). Adv. Mater. 28, 560–565 (2016). PubMed
Krempaský J. et al.. Giant Rashba splitting of bulk states in the ferroelectric αGeTe (111) semiconductor. Preprint at https://arxiv.org/abs/1503.05004v1 (2015).
Bihlmayer G., Koroteev Y., Echenique P. M., Chulkov E. V. & Blügel S. The Rashba-effect at metallic surfaces. Surf. Sci. 600, 3888–3891 (2006).
Dil J. H. Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys.: Condens. Matter 21, 403001 22pp. (2009). PubMed
Slomski B., Landolt G., Bihlmayer G., Osterwalder J. & Dil J. H. Tuning of the Rashba effect in Pb quantum well states via a variable Schottky barrier. Sci. Rep. 3, 1963 (2013). PubMed PMC
Ishizaka K. et al.. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011). PubMed
Landolt G. et al.. Disentanglement of surface and bulk Rashba spin splittings in noncentrosymmetric BiTeI. Phys. Rev. Lett. 109, 116403 (2012). PubMed
Santander-Syro A. F. et al.. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3. Nat. Mater. 13, 1085–1090 (2014). PubMed
Ast C. R. et al.. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007). PubMed
Gierz I. et al.. Structural influence on the Rashba-type spin splitting in surface alloys. Phys. Rev. B 81, 245430 (2010).
Picozzi S. Ferroelectric Rashba semiconductors as a novel class of multifunctional materials. Front. Phys. 2, 10 (2014).
Kobayashi M. et al.. Unveiling the impurity band induced ferromagnetism in the magnetic semiconductor (Ga,Mn)As. Phys. Rev. B 89, 205204 (2014).
Lechner R. T. et al.. Phase separation and exchange biasing in the ferromagnetic IV–VI semiconductor Ge1−xMnxTe. Appl. Phys. Lett. 97, 023101 (2010).
Fukuma Y. et al.. Carrier-induced ferromagnetism in Ge0.92Mn0.08Te epilayers with a Curie temperature up to 190 K. Appl. Phys. Lett. 93, 252502 (2008).
Elmers H. J. et al.. Spin mapping of surface and bulk Rashba states in ferroelectric αGeTe (111) films. Preprint at http://arxiv.org/abs/1512.01363v1 (2015).
Strocov V. N. et al.. Soft-X-ray ARPES at the Swiss light source: from 3D materials to buried interfaces and impurities. Synchrotron Radiat. News 27, 31–40 (2014).
Strocov V. N. Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron Spectrosc. Relat. Phenom. 130, 65–80 (2003).
Chen Y. L. et al.. Massive dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010). PubMed
Xu S.-Y. et al.. Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012).
Sanchez-Barriga J. et al.. Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi1−xMnx)2Se3. Nat. Commun. 7, 10559 (2016). PubMed PMC
Sato K., Fukushima T. & Katayama-Yoshida H. Ferromagnetism and spinodal decomposition in dilute magnetic nitride semiconductors. J. Phys.: Condens. Matter 19, 365212 (2007). PubMed
Fukushima T. et al.. First principles studies of GeTe based dilute magnetic semiconductors. J. Phys.: Condens. Matter 27, 015501 (2015). PubMed
Landolt G. et al.. Direct measurement of the bulk spin structure of noncentrosymmetric BiTeCl. Phys. Rev. B 91, 081201 (2015).
Rinaldi C. et al.. Evidence for spin to charge conversion in GeTe(111). APL Mater. 4, 032501 (2016).
Hassan M. et al.. Molecular beam epitaxy of single phase gemnte with high ferromagnetic transition temperature. J. Cryst. Growth 323, 363–367 (2011)) Proceedings of the 16th International Conference on Molecular Beam Epitaxy (ICMBE). PubMed PMC
Strocov V. N. et al.. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 3, 631–643 (2014). PubMed
Braun J. et al.. Exploring the xps limit in soft and hard x-ray angle-resolved photoemission using a temperature-dependent one-step theory. Phys. Rev. B 88, 205409 (2013).
Hoesch M. et al.. Spin-polarized Fermi surface mapping. J. Electron Spectrosc. Relat. Phenom. 124, 263–279 (2002).
Ebert H., Ködderitzsch D. & Minár J. Calculating condensed matter properties using the KKR-Green's function method-recent developments and applications. Rep. Prog. Phys. 74, (2011).
Braun J. & Donath M. Theory of photoemission from surfaces. J. Phys.: Condens. Matter 16, 2539–2555 (2004).