Persistence of Structural Distortion and Bulk Band Rashba Splitting in SnTe above Its Ferroelectric Critical Temperature
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 4493
Austrian Science Fund FWF - Austria
P 30960
Austrian Science Fund FWF - Austria
PubMed
38109843
PubMed Central
PMC10786156
DOI
10.1021/acs.nanolett.3c03280
Knihovny.cz E-zdroje
- Klíčová slova
- ARPES, Rashba effect, SnTe, electronic structure, ferroelectric transition, one-step calculations,
- Publikační typ
- časopisecké články MeSH
The ferroelectric semiconductor α-SnTe has been regarded as a topological crystalline insulator, and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the past decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk states. Here, we investigate the low-energy electronic structure of α-SnTe with ARPES and follow the evolution of the bulk-state Rashba splitting as a function of temperature, across its ferroelectric critical temperature of about Tc ≈ 110 K. Unexpectedly, we observe a persistent band splitting up to room temperature, which is consistent with an order-disorder contribution of local dipoles to the phase transition that requires the presence of fluctuating dipoles above Tc. We conclude that no topological surface state can occur under these conditions at the (111) surface of SnTe, at odds with recent literature.
Institut für Halbleiter und Festkörperphysik Johannes Kepler Universität Linz 4040 Austria
Institute of Physics Ecole Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland
New Technologies Research Center University of West Bohemia Plzeň 301 00 Czech Republic
Photon Science Division Paul Scherrer Institut Villigen 5232 Switzerland
Zobrazit více v PubMed
Wolf S. A.; Awschalom D. D.; Buhrman R. A.; Daughton J. M.; von Molnár S.; Roukes M. L.; Chtchelkanova A. Y.; Treger D. M. Spintronics: A Spin-Based Electronics Vision for the Future. Science 2001, 294, 1488–1495. 10.1126/science.1065389. PubMed DOI
Xu Y.; Awschalom D.; Nitta J.. Handbook of Spintronics; Springer, 2015; pp 1–1596.
Rabe K. M.; Dawber M.; Lichtensteiger C.; Ahn C. H.; Triscone J.-M.. Physics of Ferroelectrics: A Modern Perspective. Topics in Applied Physics; Springer, 2007; pp 1–30.
Noël P.; Trier F.; Vicente Arche L. M.; Bréhin J.; Vaz D. C.; Garcia V.; Fusil S.; Barthélémy A.; Vila L.; Bibes M.; Attané J.-P. Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system. Nature 2020, 580, 483–486. 10.1038/s41586-020-2197-9. PubMed DOI
A century of ferroelectricity. Nat. Mater. 2020, 19, 129.10.1038/s41563-020-0611-1 PubMed DOI
Bhalla A. S.; Saxena A. Ferroelectricity: 100 years on. Phys. World 2021, 33, 38.10.1088/2058-7058/33/11/31. DOI
Bychkov Y. A.; Rashba É. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP lett 1984, 39, 78.
Rotenberg E.; Chung J. W.; Kevan S. D. Spin-Orbit Coupling Induced Surface Band Splitting in Li/W(110) and Li/Mo(110). Phys. Rev. Lett. 1999, 82, 4066–4069. 10.1103/PhysRevLett.82.4066. DOI
Pawley G. S.; Cochran W.; Cowley R. A.; Dolling G. Diatomic Ferroelectrics. Phys. Rev. Lett. 1966, 17, 753–755. 10.1103/PhysRevLett.17.753. DOI
Krempaský J.; et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B 2016, 94, 205111.10.1103/PhysRevB.94.205111. DOI
Elmers H. J.; et al. Spin mapping of surface and bulk Rashba states in ferroelectric α-GeTe(111) films. Phys. Rev. B 2016, 94, 201403.10.1103/PhysRevB.94.201403. DOI
Di Sante D.; Barone P.; Bertacco R.; Picozzi S. Electric Control of the Giant Rashba Effect in Bulk GeTe. Adv. Mater. 2013, 25, 509–513. 10.1002/adma.201203199. PubMed DOI
Wang H.; Gopal P.; Picozzi S.; Curtarolo S.; Buongiorno Nardelli M.; Sławińska J. Spin Hall effect in prototype Rashba ferroelectrics GeTe and SnTe. npj Computational Materials 2020, 6, 1–7. 10.1038/s41524-020-0274-0. DOI
Rinaldi C.; Rojas-Sánchez J. C.; Wang R. N.; Fu Y.; Oyarzun S.; Vila L.; Bertoli S.; Asa M.; Baldrati L.; Cantoni M.; George J.-M.; Calarco R.; Fert A.; Bertacco R. Evidence for spin to charge conversion in GeTe(111). APL Materials 2016, 4, 032501.10.1063/1.4941276. DOI
Picozzi S. Ferroelectric Rashba semiconductors as a novel class of multifunctional materials. Frontiers in Physics 2014, 2, 1–5. 10.3389/fphy.2014.00010. DOI
Liebmann M.; et al. Giant Rashba-Type Spin Splitting in Ferroelectric GeTe(111). Adv. Mater. 2016, 28, 560–565. 10.1002/adma.201503459. PubMed DOI
Krempaský J.; et al. Entanglement and manipulation of the magnetic and spin–orbit order in multiferroic Rashba semiconductors. Nat. Commun. 2016, 7, 13071.10.1038/ncomms13071. PubMed DOI PMC
Krempaský J.; Muff S.; Minár J.; Pilet N.; Fanciulli M.; Weber A.; Guedes E.; Caputo M.; Müller E.; Volobuev V.; Gmitra M.; Vaz C.; Scagnoli V.; Springholz G.; Dil J. Operando Imaging of All-Electric Spin Texture Manipulation in Ferroelectric and Multiferroic Rashba Semiconductors. Physical Review X 2018, 8, 021067.10.1103/PhysRevX.8.021067. DOI
Kremer G.; Maklar J.; Nicolaï L.; Nicholson C. W.; Yue C.; Silva C.; Werner P.; Dil J. H.; Krempaský J.; Springholz G.; Ernstorfer R.; Minár J.; Rettig L.; Monney C. Field-induced ultrafast modulation of Rashba coupling at room temperature in ferroelectric α-GeTe(111). Nat. Commun. 2022, 13, 6396.10.1038/s41467-022-33978-3. PubMed DOI PMC
Iizumi M.; Hamaguchi Y.; Komatsubara K. F.; Kato Y. Phase Transition in SnTe with Low Carrier Concentration. J. Phys. Soc. Jpn. 1975, 38, 443–449. 10.1143/JPSJ.38.443. DOI
Brillson L. J.; Burstein E.; Muldawer L. Raman observation of the ferroelectric phase transition in SnTe. Phys. Rev. B 1974, 9, 1547–1551. 10.1103/PhysRevB.9.1547. DOI
Kobayashi K. L. I.; Kato Y.; Katayama Y.; Komatsubara K. F. Carrier-Concentration-Dependent Phase Transition in SnTe. Phys. Rev. Lett. 1976, 37, 772–774. 10.1103/PhysRevLett.37.772. DOI
Mazelsky R.; Lubell M. S.; Kramer W. E. Phase Studies of the Group IV-A Tellurides. J. Chem. Phys. 1962, 37, 45–47. 10.1063/1.1732972. DOI
Littlewood P. B. The crystal structure of IV-VI compounds. II. A microscopic model for cubic/rhombohedral materials. Journal of Physics C: Solid State Physics 1980, 13, 4875.10.1088/0022-3719/13/26/010. DOI
Rabe K. M.; Joannopoulos J. D. Ab initio relativistic pseudopotential study of the zero-temperature structural properties of SnTe and PbTe. Phys. Rev. B 1985, 32, 2302–2314. 10.1103/PhysRevB.32.2302. PubMed DOI
Salje E. K. H.; et al. Tin telluride: A weakly co-elastic metal. Phys. Rev. B 2010, 82, 184112.10.1103/PhysRevB.82.184112. DOI
Li Z.; Li S.; Castellan J.-P.; Heid R.; Xiao Y.; Zhao L.-D.; Chen Y.; Weber F. Anomalous transverse optical phonons in SnTe and PbTe. Phys. Rev. B 2022, 105, 014308.10.1103/PhysRevB.105.014308. DOI
O’Neill C. D.; Sokolov D. A.; Hermann A.; Bossak A.; Stock C.; Huxley A. D. Inelastic x-ray investigation of the ferroelectric transition in SnTe. Phys. Rev. B 2017, 95, 144101.10.1103/PhysRevB.95.144101. DOI
Fornasini P.; Grisenti R.; Dapiaggi M.; Agostini G. Local structural distortions in SnTe investigated by EXAFS. J. Phys.: Condens. Matter 2021, 33, 295404.10.1088/1361-648X/ac0082. PubMed DOI
Mitrofanov K. V.; Kolobov A. V.; Fons P.; Krbal M.; Shintani T.; Tominaga J.; Uruga T. Local structure of the SnTe topological crystalline insulator: Rhombohedral distortions emerging from the rocksalt phase. Phys. Rev. B 2014, 90, 134101.10.1103/PhysRevB.90.134101. DOI
Fons P.; Kolobov A. V.; Krbal M.; Tominaga J.; Andrikopoulos K. S.; Yannopoulos S. N.; Voyiatzis G. A.; Uruga T. Phase transition in crystalline GeTe: Pitfalls of averaging effects. Phys. Rev. B 2010, 82, 155209.10.1103/PhysRevB.82.155209. DOI
Matsunaga T.; Fons P.; Kolobov A. V.; Tominaga J.; Yamada N. The order-disorder transition in GeTe: Views from different length-scales. Appl. Phys. Lett. 2011, 99, 231907.10.1063/1.3665067. DOI
Chatterji T.; Kumar C. M. N.; Wdowik U. D. Anomalous temperature-induced volume contraction in GeTe. Phys. Rev. B 2015, 91, 054110.10.1103/PhysRevB.91.054110. DOI
Kimber S. A. J.; Zhang J.; Liang C. H.; Guzmán-Verri G. G.; Littlewood P. B.; Cheng Y.; Abernathy D. L.; Hudspeth J. M.; Luo Z.-Z.; Kanatzidis M. G.; Chatterji T.; Ramirez-Cuesta A. J.; Billinge S. J. L. Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe. Nat. Mater. 2023, 22, 311–315. 10.1038/s41563-023-01483-7. PubMed DOI PMC
Fu L. Topological Crystalline Insulators. Phys. Rev. Lett. 2011, 106, 106802.10.1103/PhysRevLett.106.106802. PubMed DOI
Hsieh T. H.; Lin H.; Liu J.; Duan W.; Bansil A.; Fu L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982.10.1038/ncomms1969. PubMed DOI
Shi Y.; Wu M.; Zhang F.; Feng J. 111) surface states of SnTe. Phys. Rev. B 2014, 90, 235114.10.1103/PhysRevB.90.235114. DOI
Tanaka Y.; Ren Z.; Sato T.; Nakayama K.; Souma S.; Takahashi T.; Segawa K.; Ando Y. Experimental realization of a topological crystalline insulator in SnTe. Nature Phys. 2012, 8, 800–803. 10.1038/nphys2442. DOI
Tanaka Y.; Shoman T.; Nakayama K.; Souma S.; Sato T.; Takahashi T.; Novak M.; Segawa K.; Ando Y. Two types of Dirac-cone surface states on the (111) surface of the topological crystalline insulator SnTe. Phys. Rev. B 2013, 88, 235126.10.1103/PhysRevB.88.235126. DOI
Yan C.; Liu J.; Zang Y.; Wang J.; Wang Z.; Wang P.; Zhang Z.-D.; Wang L.; Ma X.; Ji S.; He K.; Fu L.; Duan W.; Xue Q.-K.; Chen X. Experimental Observation of Dirac-like Surface States and Topological Phase Transition in Pb1–xSnxTe (111) Films. Phys. Rev. Lett. 2014, 112, 186801.10.1103/PhysRevLett.112.186801. PubMed DOI
Zhang Y.; Liu Z.; Zhou B.; Kim Y.; Yang L.; Ryu H.; Hwang C.; Chen Y.; Hussain Z.; Shen Z.-X.; Mo S.-K. ARPES study of the epitaxially grown topological crystalline insulator SnTe(111). J. Electron Spectrosc. Relat. Phenom. 2017, 219, 35–40. 10.1016/j.elspec.2016.10.003. DOI
Polley C. M.; Jovic V.; Su T.-Y.; Saghir M.; Newby D.; Kowalski B. J.; Jakiela R.; Barcz A.; Guziewicz M.; Balasubramanian T.; Balakrishnan G.; Laverock J.; Smith K. E. Observation of surface states on heavily indium-doped SnTe(111), a superconducting topological crystalline insulator. Phys. Rev. B 2016, 93, 075132.10.1103/PhysRevB.93.075132. DOI
Maiti A.; Pandeya R. P.; Singh B.; Iyer K. K.; Thamizhavel A.; Maiti K. Anomalies in the temperature evolution of Dirac states in the topological crystalline insulator SnTe. Phys. Rev. B 2021, 104, 195403.10.1103/PhysRevB.104.195403. DOI
Plekhanov E.; Barone P.; Di Sante D.; Picozzi S. Engineering relativistic effects in ferroelectric SnTe. Phys. Rev. B 2014, 90, 161108.10.1103/PhysRevB.90.161108. DOI
Momma K.; Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. 10.1107/S0021889811038970. DOI
Knox K. R.; Bozin E. S.; Malliakas C. D.; Kanatzidis M. G.; Billinge S. J. L. Local off-centering symmetry breaking in the high-temperature regime of SnTe. Phys. Rev. B 2014, 89, 014102.10.1103/PhysRevB.89.014102. DOI
Aggarwal L.; Banik A.; Anand S.; Waghmare U. V.; Biswas K.; Sheet G. Local ferroelectricity in thermoelectric SnTe above room temperature driven by competing phonon instabilities and soft resonant bonding. Journal of Materiomics 2016, 2, 196–202. 10.1016/j.jmat.2016.04.001. DOI
Chang K.; Liu J.; Lin H.; Wang N.; Zhao K.; Zhang A.; Jin F.; Zhong Y.; Hu X.; Duan W.; Zhang Q.; Fu L.; Xue Q.-K.; Chen X.; Ji S.-H. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278. 10.1126/science.aad8609. PubMed DOI
Ito H.; Otaki Y.; Tomohiro Y.; Ishida Y.; Akiyama R.; Kimura A.; Shin S.; Kuroda S. Observation of unoccupied states of SnTe(111) using pump-probe ARPES measurement. Phys. Rev. Research 2020, 2, 043120.10.1103/PhysRevResearch.2.043120. DOI
Cho S.; Park J.-H.; Hong J.; Jung J.; Kim B. S.; Han G.; Kyung W.; Kim Y.; Mo S.-K.; Denlinger J. D.; Shim J. H.; Han J. H.; Kim C.; Park S. R. Experimental Observation of Hidden Berry Curvature in Inversion-Symmetric Bulk 2H-WSe2. Phys. Rev. Lett. 2018, 121, 186401.10.1103/PhysRevLett.121.186401. PubMed DOI
Kim J.; Kim K.-W.; Shin D.; Lee S.-H.; Sinova J.; Park N.; Jin H. Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers. Nat. Commun. 2019, 10, 3965.10.1038/s41467-019-11964-6. PubMed DOI PMC