Persistence of Structural Distortion and Bulk Band Rashba Splitting in SnTe above Its Ferroelectric Critical Temperature

. 2024 Jan 10 ; 24 (1) : 82-88. [epub] 20231218

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38109843

Grantová podpora
I 4493 Austrian Science Fund FWF - Austria
P 30960 Austrian Science Fund FWF - Austria

The ferroelectric semiconductor α-SnTe has been regarded as a topological crystalline insulator, and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the past decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk states. Here, we investigate the low-energy electronic structure of α-SnTe with ARPES and follow the evolution of the bulk-state Rashba splitting as a function of temperature, across its ferroelectric critical temperature of about Tc ≈ 110 K. Unexpectedly, we observe a persistent band splitting up to room temperature, which is consistent with an order-disorder contribution of local dipoles to the phase transition that requires the presence of fluctuating dipoles above Tc. We conclude that no topological surface state can occur under these conditions at the (111) surface of SnTe, at odds with recent literature.

Zobrazit více v PubMed

Wolf S. A.; Awschalom D. D.; Buhrman R. A.; Daughton J. M.; von Molnár S.; Roukes M. L.; Chtchelkanova A. Y.; Treger D. M. Spintronics: A Spin-Based Electronics Vision for the Future. Science 2001, 294, 1488–1495. 10.1126/science.1065389. PubMed DOI

Xu Y.; Awschalom D.; Nitta J.. Handbook of Spintronics; Springer, 2015; pp 1–1596.

Rabe K. M.; Dawber M.; Lichtensteiger C.; Ahn C. H.; Triscone J.-M.. Physics of Ferroelectrics: A Modern Perspective. Topics in Applied Physics; Springer, 2007; pp 1–30.

Noël P.; Trier F.; Vicente Arche L. M.; Bréhin J.; Vaz D. C.; Garcia V.; Fusil S.; Barthélémy A.; Vila L.; Bibes M.; Attané J.-P. Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system. Nature 2020, 580, 483–486. 10.1038/s41586-020-2197-9. PubMed DOI

A century of ferroelectricity. Nat. Mater. 2020, 19, 129.10.1038/s41563-020-0611-1 PubMed DOI

Bhalla A. S.; Saxena A. Ferroelectricity: 100 years on. Phys. World 2021, 33, 38.10.1088/2058-7058/33/11/31. DOI

Bychkov Y. A.; Rashba É. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP lett 1984, 39, 78.

Rotenberg E.; Chung J. W.; Kevan S. D. Spin-Orbit Coupling Induced Surface Band Splitting in Li/W(110) and Li/Mo(110). Phys. Rev. Lett. 1999, 82, 4066–4069. 10.1103/PhysRevLett.82.4066. DOI

Pawley G. S.; Cochran W.; Cowley R. A.; Dolling G. Diatomic Ferroelectrics. Phys. Rev. Lett. 1966, 17, 753–755. 10.1103/PhysRevLett.17.753. DOI

Krempaský J.; et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B 2016, 94, 205111.10.1103/PhysRevB.94.205111. DOI

Elmers H. J.; et al. Spin mapping of surface and bulk Rashba states in ferroelectric α-GeTe(111) films. Phys. Rev. B 2016, 94, 201403.10.1103/PhysRevB.94.201403. DOI

Di Sante D.; Barone P.; Bertacco R.; Picozzi S. Electric Control of the Giant Rashba Effect in Bulk GeTe. Adv. Mater. 2013, 25, 509–513. 10.1002/adma.201203199. PubMed DOI

Wang H.; Gopal P.; Picozzi S.; Curtarolo S.; Buongiorno Nardelli M.; Sławińska J. Spin Hall effect in prototype Rashba ferroelectrics GeTe and SnTe. npj Computational Materials 2020, 6, 1–7. 10.1038/s41524-020-0274-0. DOI

Rinaldi C.; Rojas-Sánchez J. C.; Wang R. N.; Fu Y.; Oyarzun S.; Vila L.; Bertoli S.; Asa M.; Baldrati L.; Cantoni M.; George J.-M.; Calarco R.; Fert A.; Bertacco R. Evidence for spin to charge conversion in GeTe(111). APL Materials 2016, 4, 032501.10.1063/1.4941276. DOI

Picozzi S. Ferroelectric Rashba semiconductors as a novel class of multifunctional materials. Frontiers in Physics 2014, 2, 1–5. 10.3389/fphy.2014.00010. DOI

Liebmann M.; et al. Giant Rashba-Type Spin Splitting in Ferroelectric GeTe(111). Adv. Mater. 2016, 28, 560–565. 10.1002/adma.201503459. PubMed DOI

Krempaský J.; et al. Entanglement and manipulation of the magnetic and spin–orbit order in multiferroic Rashba semiconductors. Nat. Commun. 2016, 7, 13071.10.1038/ncomms13071. PubMed DOI PMC

Krempaský J.; Muff S.; Minár J.; Pilet N.; Fanciulli M.; Weber A.; Guedes E.; Caputo M.; Müller E.; Volobuev V.; Gmitra M.; Vaz C.; Scagnoli V.; Springholz G.; Dil J. Operando Imaging of All-Electric Spin Texture Manipulation in Ferroelectric and Multiferroic Rashba Semiconductors. Physical Review X 2018, 8, 021067.10.1103/PhysRevX.8.021067. DOI

Kremer G.; Maklar J.; Nicolaï L.; Nicholson C. W.; Yue C.; Silva C.; Werner P.; Dil J. H.; Krempaský J.; Springholz G.; Ernstorfer R.; Minár J.; Rettig L.; Monney C. Field-induced ultrafast modulation of Rashba coupling at room temperature in ferroelectric α-GeTe(111). Nat. Commun. 2022, 13, 6396.10.1038/s41467-022-33978-3. PubMed DOI PMC

Iizumi M.; Hamaguchi Y.; Komatsubara K. F.; Kato Y. Phase Transition in SnTe with Low Carrier Concentration. J. Phys. Soc. Jpn. 1975, 38, 443–449. 10.1143/JPSJ.38.443. DOI

Brillson L. J.; Burstein E.; Muldawer L. Raman observation of the ferroelectric phase transition in SnTe. Phys. Rev. B 1974, 9, 1547–1551. 10.1103/PhysRevB.9.1547. DOI

Kobayashi K. L. I.; Kato Y.; Katayama Y.; Komatsubara K. F. Carrier-Concentration-Dependent Phase Transition in SnTe. Phys. Rev. Lett. 1976, 37, 772–774. 10.1103/PhysRevLett.37.772. DOI

Mazelsky R.; Lubell M. S.; Kramer W. E. Phase Studies of the Group IV-A Tellurides. J. Chem. Phys. 1962, 37, 45–47. 10.1063/1.1732972. DOI

Littlewood P. B. The crystal structure of IV-VI compounds. II. A microscopic model for cubic/rhombohedral materials. Journal of Physics C: Solid State Physics 1980, 13, 4875.10.1088/0022-3719/13/26/010. DOI

Rabe K. M.; Joannopoulos J. D. Ab initio relativistic pseudopotential study of the zero-temperature structural properties of SnTe and PbTe. Phys. Rev. B 1985, 32, 2302–2314. 10.1103/PhysRevB.32.2302. PubMed DOI

Salje E. K. H.; et al. Tin telluride: A weakly co-elastic metal. Phys. Rev. B 2010, 82, 184112.10.1103/PhysRevB.82.184112. DOI

Li Z.; Li S.; Castellan J.-P.; Heid R.; Xiao Y.; Zhao L.-D.; Chen Y.; Weber F. Anomalous transverse optical phonons in SnTe and PbTe. Phys. Rev. B 2022, 105, 014308.10.1103/PhysRevB.105.014308. DOI

O’Neill C. D.; Sokolov D. A.; Hermann A.; Bossak A.; Stock C.; Huxley A. D. Inelastic x-ray investigation of the ferroelectric transition in SnTe. Phys. Rev. B 2017, 95, 144101.10.1103/PhysRevB.95.144101. DOI

Fornasini P.; Grisenti R.; Dapiaggi M.; Agostini G. Local structural distortions in SnTe investigated by EXAFS. J. Phys.: Condens. Matter 2021, 33, 295404.10.1088/1361-648X/ac0082. PubMed DOI

Mitrofanov K. V.; Kolobov A. V.; Fons P.; Krbal M.; Shintani T.; Tominaga J.; Uruga T. Local structure of the SnTe topological crystalline insulator: Rhombohedral distortions emerging from the rocksalt phase. Phys. Rev. B 2014, 90, 134101.10.1103/PhysRevB.90.134101. DOI

Fons P.; Kolobov A. V.; Krbal M.; Tominaga J.; Andrikopoulos K. S.; Yannopoulos S. N.; Voyiatzis G. A.; Uruga T. Phase transition in crystalline GeTe: Pitfalls of averaging effects. Phys. Rev. B 2010, 82, 155209.10.1103/PhysRevB.82.155209. DOI

Matsunaga T.; Fons P.; Kolobov A. V.; Tominaga J.; Yamada N. The order-disorder transition in GeTe: Views from different length-scales. Appl. Phys. Lett. 2011, 99, 231907.10.1063/1.3665067. DOI

Chatterji T.; Kumar C. M. N.; Wdowik U. D. Anomalous temperature-induced volume contraction in GeTe. Phys. Rev. B 2015, 91, 054110.10.1103/PhysRevB.91.054110. DOI

Kimber S. A. J.; Zhang J.; Liang C. H.; Guzmán-Verri G. G.; Littlewood P. B.; Cheng Y.; Abernathy D. L.; Hudspeth J. M.; Luo Z.-Z.; Kanatzidis M. G.; Chatterji T.; Ramirez-Cuesta A. J.; Billinge S. J. L. Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe. Nat. Mater. 2023, 22, 311–315. 10.1038/s41563-023-01483-7. PubMed DOI PMC

Fu L. Topological Crystalline Insulators. Phys. Rev. Lett. 2011, 106, 106802.10.1103/PhysRevLett.106.106802. PubMed DOI

Hsieh T. H.; Lin H.; Liu J.; Duan W.; Bansil A.; Fu L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982.10.1038/ncomms1969. PubMed DOI

Shi Y.; Wu M.; Zhang F.; Feng J. 111) surface states of SnTe. Phys. Rev. B 2014, 90, 235114.10.1103/PhysRevB.90.235114. DOI

Tanaka Y.; Ren Z.; Sato T.; Nakayama K.; Souma S.; Takahashi T.; Segawa K.; Ando Y. Experimental realization of a topological crystalline insulator in SnTe. Nature Phys. 2012, 8, 800–803. 10.1038/nphys2442. DOI

Tanaka Y.; Shoman T.; Nakayama K.; Souma S.; Sato T.; Takahashi T.; Novak M.; Segawa K.; Ando Y. Two types of Dirac-cone surface states on the (111) surface of the topological crystalline insulator SnTe. Phys. Rev. B 2013, 88, 235126.10.1103/PhysRevB.88.235126. DOI

Yan C.; Liu J.; Zang Y.; Wang J.; Wang Z.; Wang P.; Zhang Z.-D.; Wang L.; Ma X.; Ji S.; He K.; Fu L.; Duan W.; Xue Q.-K.; Chen X. Experimental Observation of Dirac-like Surface States and Topological Phase Transition in Pb1–xSnxTe (111) Films. Phys. Rev. Lett. 2014, 112, 186801.10.1103/PhysRevLett.112.186801. PubMed DOI

Zhang Y.; Liu Z.; Zhou B.; Kim Y.; Yang L.; Ryu H.; Hwang C.; Chen Y.; Hussain Z.; Shen Z.-X.; Mo S.-K. ARPES study of the epitaxially grown topological crystalline insulator SnTe(111). J. Electron Spectrosc. Relat. Phenom. 2017, 219, 35–40. 10.1016/j.elspec.2016.10.003. DOI

Polley C. M.; Jovic V.; Su T.-Y.; Saghir M.; Newby D.; Kowalski B. J.; Jakiela R.; Barcz A.; Guziewicz M.; Balasubramanian T.; Balakrishnan G.; Laverock J.; Smith K. E. Observation of surface states on heavily indium-doped SnTe(111), a superconducting topological crystalline insulator. Phys. Rev. B 2016, 93, 075132.10.1103/PhysRevB.93.075132. DOI

Maiti A.; Pandeya R. P.; Singh B.; Iyer K. K.; Thamizhavel A.; Maiti K. Anomalies in the temperature evolution of Dirac states in the topological crystalline insulator SnTe. Phys. Rev. B 2021, 104, 195403.10.1103/PhysRevB.104.195403. DOI

Plekhanov E.; Barone P.; Di Sante D.; Picozzi S. Engineering relativistic effects in ferroelectric SnTe. Phys. Rev. B 2014, 90, 161108.10.1103/PhysRevB.90.161108. DOI

Momma K.; Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. 10.1107/S0021889811038970. DOI

Knox K. R.; Bozin E. S.; Malliakas C. D.; Kanatzidis M. G.; Billinge S. J. L. Local off-centering symmetry breaking in the high-temperature regime of SnTe. Phys. Rev. B 2014, 89, 014102.10.1103/PhysRevB.89.014102. DOI

Aggarwal L.; Banik A.; Anand S.; Waghmare U. V.; Biswas K.; Sheet G. Local ferroelectricity in thermoelectric SnTe above room temperature driven by competing phonon instabilities and soft resonant bonding. Journal of Materiomics 2016, 2, 196–202. 10.1016/j.jmat.2016.04.001. DOI

Chang K.; Liu J.; Lin H.; Wang N.; Zhao K.; Zhang A.; Jin F.; Zhong Y.; Hu X.; Duan W.; Zhang Q.; Fu L.; Xue Q.-K.; Chen X.; Ji S.-H. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278. 10.1126/science.aad8609. PubMed DOI

Ito H.; Otaki Y.; Tomohiro Y.; Ishida Y.; Akiyama R.; Kimura A.; Shin S.; Kuroda S. Observation of unoccupied states of SnTe(111) using pump-probe ARPES measurement. Phys. Rev. Research 2020, 2, 043120.10.1103/PhysRevResearch.2.043120. DOI

Cho S.; Park J.-H.; Hong J.; Jung J.; Kim B. S.; Han G.; Kyung W.; Kim Y.; Mo S.-K.; Denlinger J. D.; Shim J. H.; Han J. H.; Kim C.; Park S. R. Experimental Observation of Hidden Berry Curvature in Inversion-Symmetric Bulk 2H-WSe2. Phys. Rev. Lett. 2018, 121, 186401.10.1103/PhysRevLett.121.186401. PubMed DOI

Kim J.; Kim K.-W.; Shin D.; Lee S.-H.; Sinova J.; Park N.; Jin H. Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers. Nat. Commun. 2019, 10, 3965.10.1038/s41467-019-11964-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace