• This record comes from PubMed

Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers

. 2019 Sep 03 ; 10 (1) : 3965. [epub] 20190903

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
2019R1A2C1010498 National Research Foundation of Korea (NRF)
2016R1D1A1B03933255 National Research Foundation of Korea (NRF)

Links

PubMed 31481651
PubMed Central PMC6722129
DOI 10.1038/s41467-019-11964-6
PII: 10.1038/s41467-019-11964-6
Knihovny.cz E-resources

In symmetry-broken crystalline solids, pole structures of Berry curvature (BC) can emerge, and they have been utilized as a versatile tool for controlling transport properties. For example, the monopole component of the BC is induced by the time-reversal symmetry breaking, and the BC dipole arises from a lack of inversion symmetry, leading to the anomalous Hall and nonlinear Hall effects, respectively. Based on first-principles calculations, we show that the ferroelectricity in a tin telluride monolayer produces a unique BC distribution, which offers charge- and spin-controllable photocurrents. Even with the sizable band gap, the ferroelectrically driven BC dipole is comparable to those of small-gap topological materials. By manipulating the photon handedness and the ferroelectric polarization, charge and spin circular photogalvanic currents are generated in a controllable manner. The ferroelectricity in group-IV monochalcogenide monolayers can be a useful tool to control the BC dipole and the nonlinear optoelectronic responses.

See more in PubMed

Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 1982;49:405–408. doi: 10.1103/PhysRevLett.49.405. DOI

Xiao D, Chang M-C, Niu Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010;82:1959–2007. doi: 10.1103/RevModPhys.82.1959. DOI

Yu R, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science. 2010;329:61–64. doi: 10.1126/science.1187485. PubMed DOI

Fang Z, et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science. 2003;302:92–95. doi: 10.1126/science.1089408. PubMed DOI

Chang M-C, Niu Q. Berry phase, hyperorbits, and the Hofstadter spectrum. Phys. Rev. Lett. 1995;75:1348–1351. doi: 10.1103/PhysRevLett.75.1348. PubMed DOI

Sundaram G, Niu Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B. 1999;59:14915–14925. doi: 10.1103/PhysRevB.59.14915. DOI

Murakami S, Nagaosa N, Zhang S-C. Dissipationless quantum spin current at room temperature. Science. 2003;301:1348–1351. doi: 10.1126/science.1087128. PubMed DOI

Xiao D, Yao W, Niu Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 2007;99:236809. doi: 10.1103/PhysRevLett.99.236809. PubMed DOI

Xiao D, Liu G-B, Feng W, Xu X, Yao W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012;108:196802. doi: 10.1103/PhysRevLett.108.196802. PubMed DOI

Chang C-Z, et al. Experimental observation of the quantum anomalous Hall Effect in a magnetic topological insulator. Science. 2013;340:167–170. doi: 10.1126/science.1234414. PubMed DOI

Kim J, Jhi S-H, MacDonald AH, Wu R. Ordering mechanism and quantum anomalous Hall effect of magnetically doped topological insulators. Phys. Rev. B. 2017;96:140410. doi: 10.1103/PhysRevB.96.140410. DOI

Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous Hall effect. Rev. Mod. Phys. 2010;82:1539–1592. doi: 10.1103/RevModPhys.82.1539. DOI

Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev. Mod. Phys. 2015;87:1213–1260. doi: 10.1103/RevModPhys.87.1213. DOI

Berry MV. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A. 1984;392:45–57. doi: 10.1098/rspa.1984.0023. DOI

Jungwirth T, Niu Q, MacDonald AH. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 2002;88:207208. doi: 10.1103/PhysRevLett.88.207208. PubMed DOI

Deyo, E., Golub, L., Ivchenko, E. & Spivak, B. Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems. Preprint at http://arxiv.org/abs/0904.1917 (2009).

Moore JE, Orenstein J. Confinement-induced berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 2010;105:026805. doi: 10.1103/PhysRevLett.105.026805. PubMed DOI

Sodemann I, Fu L. Quantum nonlinear Hall effect induced by berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 2015;115:216806. doi: 10.1103/PhysRevLett.115.216806. PubMed DOI

Low T, Jiang Y, Guinea F. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B. 2015;92:235447. doi: 10.1103/PhysRevB.92.235447. DOI

Xu S-Y, et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 2018;14:900–906. doi: 10.1038/s41567-018-0189-6. DOI

Ma Q, et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature. 2019;565:337–342. doi: 10.1038/s41586-018-0807-6. PubMed DOI

Manna K, et al. From colossal to zero: controlling the anomalous Hall effect in magnetic heusler compounds via Berry curvature design. Phys. Rev. X. 2018;8:041045.

de Juan F, Grushin AG, Morimoto T, Moore JE. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 2017;8:15995. doi: 10.1038/ncomms15995. PubMed DOI PMC

Facio JI, et al. Strongly enhanced berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 2018;121:246403. doi: 10.1103/PhysRevLett.121.246403. PubMed DOI

Zhang Y, Sun Y, Yan B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B. 2018;97:041101. doi: 10.1103/PhysRevB.97.041101. DOI

Hosur P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B. 2011;83:035309. doi: 10.1103/PhysRevB.83.035309. DOI

Chang K, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science. 2016;353:274–278. doi: 10.1126/science.aad8609. PubMed DOI

Mehboudi M, et al. Two-dimensional disorder in black phosphorus and monochalcogenide monolayers. Nano Lett. 2016;16:1704–1712. doi: 10.1021/acs.nanolett.5b04613. PubMed DOI

Wu M, Zeng XC. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016;16:3236–3241. doi: 10.1021/acs.nanolett.6b00726. PubMed DOI

Fei R, Kang W, Yang L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 2016;117:097601. doi: 10.1103/PhysRevLett.117.097601. PubMed DOI

Xu L, Yang M, Wang SJ, Feng YP. Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M=Ge, Sn; X=S, Se, Te) Phys. Rev. B. 2017;95:235434. doi: 10.1103/PhysRevB.95.235434. DOI

Bychkov YA, Rashba ÉI. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984;39:78.

Lee, H., Im, J. & Jin, H. Harnessing the giant in-plane Rashba effect and the nanoscale persistent spin helix via ferroelectricity in SnTe thin films. Preprint at http://arxiv.org/abs/1712.06112 (2017).

Kim M, Im J, Freeman AJ, Ihm J, Jin H. Switchable S=1/2 and J=1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. 2014;111:6900–6904. doi: 10.1073/pnas.1405780111. PubMed DOI PMC

Park SR, Kim CH, Yu J, Han JH, Kim C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 2011;107:156803. doi: 10.1103/PhysRevLett.107.156803. PubMed DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003;118:8207–8215. doi: 10.1063/1.1564060. DOI

Cao T, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012;3:887. doi: 10.1038/ncomms1882. PubMed DOI PMC

Sipe JE, Shkrebtii AI. Second-order optical response in semiconductors. Phys. Rev. B. 2000;61:5337–5352. doi: 10.1103/PhysRevB.61.5337. PubMed DOI

Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Yao Y, et al. First principles calculation of anomalous hall conductivity in ferromagnetic bcc Fe. Phys. Rev. Lett. 2004;92:037204. doi: 10.1103/PhysRevLett.92.037204. PubMed DOI

Mostofi AA, et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008;178:685–699. doi: 10.1016/j.cpc.2007.11.016. DOI

Kim J, et al. Weyl node assisted conductivity switch in interfacial phase-change memory with van der Waals interfaces. Phys. Rev. B. 2017;96:235304. doi: 10.1103/PhysRevB.96.235304. DOI

Paolo G, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. 2009;21:395502. PubMed

Shin D, Lee G, Miyamoto Y, Park N. Real-time propagation via time-dependent density functional theory plus the hubbard u potential for electron–atom coupled dynamics involving charge transfer. J. Chem. Theory Comput. 2016;12:201–208. doi: 10.1021/acs.jctc.5b00895. PubMed DOI

Shin D, et al. Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states. Proc. Natl Acad. Sci. 2019;116:4135–4140. doi: 10.1073/pnas.1816904116. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...