Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
2019R1A2C1010498
National Research Foundation of Korea (NRF)
2016R1D1A1B03933255
National Research Foundation of Korea (NRF)
PubMed
31481651
PubMed Central
PMC6722129
DOI
10.1038/s41467-019-11964-6
PII: 10.1038/s41467-019-11964-6
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
In symmetry-broken crystalline solids, pole structures of Berry curvature (BC) can emerge, and they have been utilized as a versatile tool for controlling transport properties. For example, the monopole component of the BC is induced by the time-reversal symmetry breaking, and the BC dipole arises from a lack of inversion symmetry, leading to the anomalous Hall and nonlinear Hall effects, respectively. Based on first-principles calculations, we show that the ferroelectricity in a tin telluride monolayer produces a unique BC distribution, which offers charge- and spin-controllable photocurrents. Even with the sizable band gap, the ferroelectrically driven BC dipole is comparable to those of small-gap topological materials. By manipulating the photon handedness and the ferroelectric polarization, charge and spin circular photogalvanic currents are generated in a controllable manner. The ferroelectricity in group-IV monochalcogenide monolayers can be a useful tool to control the BC dipole and the nonlinear optoelectronic responses.
Center for Spintronics Korea Institute of Science and Technology Seoul 02792 Korea
Department of Physics Incheon National University Incheon 22012 Korea
Department of Physics Ulsan National Institute of Science and Technology Ulsan 44919 Korea
Institute of Physics Johannes Gutenberg University Mainz Mainz 55099 Germany
See more in PubMed
Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 1982;49:405–408. doi: 10.1103/PhysRevLett.49.405. DOI
Xiao D, Chang M-C, Niu Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010;82:1959–2007. doi: 10.1103/RevModPhys.82.1959. DOI
Yu R, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science. 2010;329:61–64. doi: 10.1126/science.1187485. PubMed DOI
Fang Z, et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science. 2003;302:92–95. doi: 10.1126/science.1089408. PubMed DOI
Chang M-C, Niu Q. Berry phase, hyperorbits, and the Hofstadter spectrum. Phys. Rev. Lett. 1995;75:1348–1351. doi: 10.1103/PhysRevLett.75.1348. PubMed DOI
Sundaram G, Niu Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B. 1999;59:14915–14925. doi: 10.1103/PhysRevB.59.14915. DOI
Murakami S, Nagaosa N, Zhang S-C. Dissipationless quantum spin current at room temperature. Science. 2003;301:1348–1351. doi: 10.1126/science.1087128. PubMed DOI
Xiao D, Yao W, Niu Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 2007;99:236809. doi: 10.1103/PhysRevLett.99.236809. PubMed DOI
Xiao D, Liu G-B, Feng W, Xu X, Yao W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012;108:196802. doi: 10.1103/PhysRevLett.108.196802. PubMed DOI
Chang C-Z, et al. Experimental observation of the quantum anomalous Hall Effect in a magnetic topological insulator. Science. 2013;340:167–170. doi: 10.1126/science.1234414. PubMed DOI
Kim J, Jhi S-H, MacDonald AH, Wu R. Ordering mechanism and quantum anomalous Hall effect of magnetically doped topological insulators. Phys. Rev. B. 2017;96:140410. doi: 10.1103/PhysRevB.96.140410. DOI
Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous Hall effect. Rev. Mod. Phys. 2010;82:1539–1592. doi: 10.1103/RevModPhys.82.1539. DOI
Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev. Mod. Phys. 2015;87:1213–1260. doi: 10.1103/RevModPhys.87.1213. DOI
Berry MV. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A. 1984;392:45–57. doi: 10.1098/rspa.1984.0023. DOI
Jungwirth T, Niu Q, MacDonald AH. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 2002;88:207208. doi: 10.1103/PhysRevLett.88.207208. PubMed DOI
Deyo, E., Golub, L., Ivchenko, E. & Spivak, B. Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems. Preprint at http://arxiv.org/abs/0904.1917 (2009).
Moore JE, Orenstein J. Confinement-induced berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 2010;105:026805. doi: 10.1103/PhysRevLett.105.026805. PubMed DOI
Sodemann I, Fu L. Quantum nonlinear Hall effect induced by berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 2015;115:216806. doi: 10.1103/PhysRevLett.115.216806. PubMed DOI
Low T, Jiang Y, Guinea F. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B. 2015;92:235447. doi: 10.1103/PhysRevB.92.235447. DOI
Xu S-Y, et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 2018;14:900–906. doi: 10.1038/s41567-018-0189-6. DOI
Ma Q, et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature. 2019;565:337–342. doi: 10.1038/s41586-018-0807-6. PubMed DOI
Manna K, et al. From colossal to zero: controlling the anomalous Hall effect in magnetic heusler compounds via Berry curvature design. Phys. Rev. X. 2018;8:041045.
de Juan F, Grushin AG, Morimoto T, Moore JE. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 2017;8:15995. doi: 10.1038/ncomms15995. PubMed DOI PMC
Facio JI, et al. Strongly enhanced berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 2018;121:246403. doi: 10.1103/PhysRevLett.121.246403. PubMed DOI
Zhang Y, Sun Y, Yan B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B. 2018;97:041101. doi: 10.1103/PhysRevB.97.041101. DOI
Hosur P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B. 2011;83:035309. doi: 10.1103/PhysRevB.83.035309. DOI
Chang K, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science. 2016;353:274–278. doi: 10.1126/science.aad8609. PubMed DOI
Mehboudi M, et al. Two-dimensional disorder in black phosphorus and monochalcogenide monolayers. Nano Lett. 2016;16:1704–1712. doi: 10.1021/acs.nanolett.5b04613. PubMed DOI
Wu M, Zeng XC. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016;16:3236–3241. doi: 10.1021/acs.nanolett.6b00726. PubMed DOI
Fei R, Kang W, Yang L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 2016;117:097601. doi: 10.1103/PhysRevLett.117.097601. PubMed DOI
Xu L, Yang M, Wang SJ, Feng YP. Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M=Ge, Sn; X=S, Se, Te) Phys. Rev. B. 2017;95:235434. doi: 10.1103/PhysRevB.95.235434. DOI
Bychkov YA, Rashba ÉI. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984;39:78.
Lee, H., Im, J. & Jin, H. Harnessing the giant in-plane Rashba effect and the nanoscale persistent spin helix via ferroelectricity in SnTe thin films. Preprint at http://arxiv.org/abs/1712.06112 (2017).
Kim M, Im J, Freeman AJ, Ihm J, Jin H. Switchable S=1/2 and J=1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. 2014;111:6900–6904. doi: 10.1073/pnas.1405780111. PubMed DOI PMC
Park SR, Kim CH, Yu J, Han JH, Kim C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 2011;107:156803. doi: 10.1103/PhysRevLett.107.156803. PubMed DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003;118:8207–8215. doi: 10.1063/1.1564060. DOI
Cao T, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012;3:887. doi: 10.1038/ncomms1882. PubMed DOI PMC
Sipe JE, Shkrebtii AI. Second-order optical response in semiconductors. Phys. Rev. B. 2000;61:5337–5352. doi: 10.1103/PhysRevB.61.5337. PubMed DOI
Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Yao Y, et al. First principles calculation of anomalous hall conductivity in ferromagnetic bcc Fe. Phys. Rev. Lett. 2004;92:037204. doi: 10.1103/PhysRevLett.92.037204. PubMed DOI
Mostofi AA, et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008;178:685–699. doi: 10.1016/j.cpc.2007.11.016. DOI
Kim J, et al. Weyl node assisted conductivity switch in interfacial phase-change memory with van der Waals interfaces. Phys. Rev. B. 2017;96:235304. doi: 10.1103/PhysRevB.96.235304. DOI
Paolo G, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. 2009;21:395502. PubMed
Shin D, Lee G, Miyamoto Y, Park N. Real-time propagation via time-dependent density functional theory plus the hubbard u potential for electron–atom coupled dynamics involving charge transfer. J. Chem. Theory Comput. 2016;12:201–208. doi: 10.1021/acs.jctc.5b00895. PubMed DOI
Shin D, et al. Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states. Proc. Natl Acad. Sci. 2019;116:4135–4140. doi: 10.1073/pnas.1816904116. PubMed DOI PMC