Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers

. 2019 Sep 03 ; 10 (1) : 3965. [epub] 20190903

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31481651

Grantová podpora
2019R1A2C1010498 National Research Foundation of Korea (NRF)
2016R1D1A1B03933255 National Research Foundation of Korea (NRF)

Odkazy

PubMed 31481651
PubMed Central PMC6722129
DOI 10.1038/s41467-019-11964-6
PII: 10.1038/s41467-019-11964-6
Knihovny.cz E-zdroje

In symmetry-broken crystalline solids, pole structures of Berry curvature (BC) can emerge, and they have been utilized as a versatile tool for controlling transport properties. For example, the monopole component of the BC is induced by the time-reversal symmetry breaking, and the BC dipole arises from a lack of inversion symmetry, leading to the anomalous Hall and nonlinear Hall effects, respectively. Based on first-principles calculations, we show that the ferroelectricity in a tin telluride monolayer produces a unique BC distribution, which offers charge- and spin-controllable photocurrents. Even with the sizable band gap, the ferroelectrically driven BC dipole is comparable to those of small-gap topological materials. By manipulating the photon handedness and the ferroelectric polarization, charge and spin circular photogalvanic currents are generated in a controllable manner. The ferroelectricity in group-IV monochalcogenide monolayers can be a useful tool to control the BC dipole and the nonlinear optoelectronic responses.

Zobrazit více v PubMed

Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 1982;49:405–408. doi: 10.1103/PhysRevLett.49.405. DOI

Xiao D, Chang M-C, Niu Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010;82:1959–2007. doi: 10.1103/RevModPhys.82.1959. DOI

Yu R, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science. 2010;329:61–64. doi: 10.1126/science.1187485. PubMed DOI

Fang Z, et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science. 2003;302:92–95. doi: 10.1126/science.1089408. PubMed DOI

Chang M-C, Niu Q. Berry phase, hyperorbits, and the Hofstadter spectrum. Phys. Rev. Lett. 1995;75:1348–1351. doi: 10.1103/PhysRevLett.75.1348. PubMed DOI

Sundaram G, Niu Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B. 1999;59:14915–14925. doi: 10.1103/PhysRevB.59.14915. DOI

Murakami S, Nagaosa N, Zhang S-C. Dissipationless quantum spin current at room temperature. Science. 2003;301:1348–1351. doi: 10.1126/science.1087128. PubMed DOI

Xiao D, Yao W, Niu Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 2007;99:236809. doi: 10.1103/PhysRevLett.99.236809. PubMed DOI

Xiao D, Liu G-B, Feng W, Xu X, Yao W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012;108:196802. doi: 10.1103/PhysRevLett.108.196802. PubMed DOI

Chang C-Z, et al. Experimental observation of the quantum anomalous Hall Effect in a magnetic topological insulator. Science. 2013;340:167–170. doi: 10.1126/science.1234414. PubMed DOI

Kim J, Jhi S-H, MacDonald AH, Wu R. Ordering mechanism and quantum anomalous Hall effect of magnetically doped topological insulators. Phys. Rev. B. 2017;96:140410. doi: 10.1103/PhysRevB.96.140410. DOI

Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous Hall effect. Rev. Mod. Phys. 2010;82:1539–1592. doi: 10.1103/RevModPhys.82.1539. DOI

Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev. Mod. Phys. 2015;87:1213–1260. doi: 10.1103/RevModPhys.87.1213. DOI

Berry MV. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A. 1984;392:45–57. doi: 10.1098/rspa.1984.0023. DOI

Jungwirth T, Niu Q, MacDonald AH. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 2002;88:207208. doi: 10.1103/PhysRevLett.88.207208. PubMed DOI

Deyo, E., Golub, L., Ivchenko, E. & Spivak, B. Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems. Preprint at http://arxiv.org/abs/0904.1917 (2009).

Moore JE, Orenstein J. Confinement-induced berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 2010;105:026805. doi: 10.1103/PhysRevLett.105.026805. PubMed DOI

Sodemann I, Fu L. Quantum nonlinear Hall effect induced by berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 2015;115:216806. doi: 10.1103/PhysRevLett.115.216806. PubMed DOI

Low T, Jiang Y, Guinea F. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B. 2015;92:235447. doi: 10.1103/PhysRevB.92.235447. DOI

Xu S-Y, et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 2018;14:900–906. doi: 10.1038/s41567-018-0189-6. DOI

Ma Q, et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature. 2019;565:337–342. doi: 10.1038/s41586-018-0807-6. PubMed DOI

Manna K, et al. From colossal to zero: controlling the anomalous Hall effect in magnetic heusler compounds via Berry curvature design. Phys. Rev. X. 2018;8:041045.

de Juan F, Grushin AG, Morimoto T, Moore JE. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 2017;8:15995. doi: 10.1038/ncomms15995. PubMed DOI PMC

Facio JI, et al. Strongly enhanced berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 2018;121:246403. doi: 10.1103/PhysRevLett.121.246403. PubMed DOI

Zhang Y, Sun Y, Yan B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B. 2018;97:041101. doi: 10.1103/PhysRevB.97.041101. DOI

Hosur P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B. 2011;83:035309. doi: 10.1103/PhysRevB.83.035309. DOI

Chang K, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science. 2016;353:274–278. doi: 10.1126/science.aad8609. PubMed DOI

Mehboudi M, et al. Two-dimensional disorder in black phosphorus and monochalcogenide monolayers. Nano Lett. 2016;16:1704–1712. doi: 10.1021/acs.nanolett.5b04613. PubMed DOI

Wu M, Zeng XC. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016;16:3236–3241. doi: 10.1021/acs.nanolett.6b00726. PubMed DOI

Fei R, Kang W, Yang L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 2016;117:097601. doi: 10.1103/PhysRevLett.117.097601. PubMed DOI

Xu L, Yang M, Wang SJ, Feng YP. Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M=Ge, Sn; X=S, Se, Te) Phys. Rev. B. 2017;95:235434. doi: 10.1103/PhysRevB.95.235434. DOI

Bychkov YA, Rashba ÉI. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984;39:78.

Lee, H., Im, J. & Jin, H. Harnessing the giant in-plane Rashba effect and the nanoscale persistent spin helix via ferroelectricity in SnTe thin films. Preprint at http://arxiv.org/abs/1712.06112 (2017).

Kim M, Im J, Freeman AJ, Ihm J, Jin H. Switchable S=1/2 and J=1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. 2014;111:6900–6904. doi: 10.1073/pnas.1405780111. PubMed DOI PMC

Park SR, Kim CH, Yu J, Han JH, Kim C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 2011;107:156803. doi: 10.1103/PhysRevLett.107.156803. PubMed DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003;118:8207–8215. doi: 10.1063/1.1564060. DOI

Cao T, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012;3:887. doi: 10.1038/ncomms1882. PubMed DOI PMC

Sipe JE, Shkrebtii AI. Second-order optical response in semiconductors. Phys. Rev. B. 2000;61:5337–5352. doi: 10.1103/PhysRevB.61.5337. PubMed DOI

Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Yao Y, et al. First principles calculation of anomalous hall conductivity in ferromagnetic bcc Fe. Phys. Rev. Lett. 2004;92:037204. doi: 10.1103/PhysRevLett.92.037204. PubMed DOI

Mostofi AA, et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008;178:685–699. doi: 10.1016/j.cpc.2007.11.016. DOI

Kim J, et al. Weyl node assisted conductivity switch in interfacial phase-change memory with van der Waals interfaces. Phys. Rev. B. 2017;96:235304. doi: 10.1103/PhysRevB.96.235304. DOI

Paolo G, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. 2009;21:395502. PubMed

Shin D, Lee G, Miyamoto Y, Park N. Real-time propagation via time-dependent density functional theory plus the hubbard u potential for electron–atom coupled dynamics involving charge transfer. J. Chem. Theory Comput. 2016;12:201–208. doi: 10.1021/acs.jctc.5b00895. PubMed DOI

Shin D, et al. Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states. Proc. Natl Acad. Sci. 2019;116:4135–4140. doi: 10.1073/pnas.1816904116. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...