Field-induced ultrafast modulation of Rashba coupling at room temperature in ferroelectric α-GeTe(111)
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
I 4493
Austrian Science Fund FWF - Austria
P 30960
Austrian Science Fund FWF - Austria
PubMed
36302853
PubMed Central
PMC9613697
DOI
10.1038/s41467-022-33978-3
PII: 10.1038/s41467-022-33978-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, α-GeTe(111) is a non-centrosymmetric ferroelectric semiconductor for which a strong spin-orbit interaction gives rise to giant Rashba coupling. Its room temperature ferroelectricity was recently demonstrated as a route towards a new type of highly energy-efficient non-volatile memory device based on switchable polarization. Currently based on the application of an electric field, the writing and reading processes could be outperformed by the use of femtosecond light pulses requiring exploration of the possible control of ferroelectricity on this timescale. Here, we probe the room temperature transient dynamics of the electronic band structure of α-GeTe(111) using time and angle-resolved photoemission spectroscopy. Our experiments reveal an ultrafast modulation of the Rashba coupling mediated on the fs timescale by a surface photovoltage, namely an increase corresponding to a 13% enhancement of the lattice distortion. This opens the route for the control of the ferroelectric polarization in α-GeTe(111) and ferroelectric semiconducting materials in quantum heterostructures.
Fritz Haber Institute of the Max Planck Society Faradayweg 4 6 14195 Berlin Germany
Institut für Halbleiter und Festkörperphysik Johannes Kepler Universität A 4040 Linz Austria
Institute of physics Ecole Polytechnique Fédérale de Lausanne CH 1015 Lausanne Switzerland
New Technologies Research Center University of West Bohemia Plzen Czech Republic
Photon Science Division Paul Scherrer Institut CH 5232 Villigen Switzerland
Université Paris Saclay CNRS Centre de Nanosciences et de Nanotechnologies 91120 Palaiseau France
Zobrazit více v PubMed
Stojchevska L, et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science. 2014;344:177–180. doi: 10.1126/science.1241591. PubMed DOI
Kogar A, et al. Light-induced charge density wave in LaTe3. Nat. Phys. 2020;16:159–163. doi: 10.1038/s41567-019-0705-3. DOI
Maklar J, et al. Nonequilibrium charge-density-wave order beyond the thermal limit. Nat. Commun. 2021;12:1–8. doi: 10.1038/s41467-021-22778-w. PubMed DOI PMC
Beaulieu S, et al. Ultrafast dynamical Lifshitz transition. Sci. Adv. 2021;7:eabd9275. doi: 10.1126/sciadv.abd9275. PubMed DOI PMC
Nova T, Disa A, Fechner M, Cavalleri A. Metastable ferroelectricity in optically strained SrTiO3. Science. 2019;364:1075–1079. doi: 10.1126/science.aaw4911. PubMed DOI
Di Sante D, Barone P, Bertacco R, Picozzi S. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 2013;25:509–513. doi: 10.1002/adma.201203199. PubMed DOI
Liebmann M, et al. Giant Rashba-type spin splitting in ferroelectric GeTe (111) Adv. Mater. 2016;28:560–565. doi: 10.1002/adma.201503459. PubMed DOI
Krempaský J, et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B. 2016;94:205111. doi: 10.1103/PhysRevB.94.205111. DOI
Rojas Sánchez JC, et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 2013;4:2944. doi: 10.1038/ncomms3944. PubMed DOI
Lesne E, et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 2016;15:1261. doi: 10.1038/nmat4726. PubMed DOI
Noël P, et al. Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system. Nature. 2020;580:483–486. doi: 10.1038/s41586-020-2197-9. PubMed DOI
Varotto S, et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electron. 2021;4:740–747. doi: 10.1038/s41928-021-00653-2. DOI
Puppin M, et al. Time-and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum. 2019;90:023104. doi: 10.1063/1.5081938. PubMed DOI
Krempaský J, et al. Fully spin-polarized bulk states in ferroelectric GeTe. Phys. Rev. Research. 2020;2:013107. doi: 10.1103/PhysRevResearch.2.013107. DOI
Kremer G, et al. Unveiling the complete dispersion of the giant Rashba split surface states of ferroelectric α–GeTe(111) by alkali doping. Phys. Rev. Research. 2020;2:033115. doi: 10.1103/PhysRevResearch.2.033115. DOI
Krempaský J, et al. Triple-point fermions in ferroelectric GeTe. Phys. Rev. Lett. 2021;126:206403. doi: 10.1103/PhysRevLett.126.206403. PubMed DOI
Braun J, Minar J, Ebert H. Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission. Phys. Rep. 2018;740:1–34. doi: 10.1016/j.physrep.2018.02.007. DOI
Rinaldi C, et al. Ferroelectric control of the spin texture in GeTe. Nano Lett. 2018;18:2751–2758. doi: 10.1021/acs.nanolett.7b04829. PubMed DOI PMC
Huber T, et al. Coherent structural dynamics of a prototypical charge-density-wave-to-metal transition. Phys. Rev. Lett. 2014;113:026401. doi: 10.1103/PhysRevLett.113.026401. PubMed DOI
Nicholson CW, et al. Beyond the molecular movie: dynamics of bands and bonds during a photoinduced phase transition. Science. 2018;362:821–825. doi: 10.1126/science.aar4183. PubMed DOI
Dangic D, Hellman O, Fahy S, Savic I. The origin of the lattice thermal conductivity enhancement at the ferroelectric phase transition in GeTe. Npj Comput. Mater. 2021;7:1–8. doi: 10.1038/s41524-021-00523-7. DOI
Hu J, Vanacore GM, Yang Z, Miao X, Zewail AH. Transient structures and possible limits of data recording in phase-change materials. ACS Nano. 2015;9:6728–6737. doi: 10.1021/acsnano.5b01965. PubMed DOI
Matsubara E, et al. Initial atomic motion immediately following femtosecond-laser excitation in phase-change materials. Phys. Rev. Lett. 2016;117:135501. doi: 10.1103/PhysRevLett.117.135501. PubMed DOI
Chen N-K, et al. Directional forces by momentumless excitation and order-to-order transition in peierls-distorted solids: the case of GeTe. Phys. Rev. Lett. 2018;120:185701. doi: 10.1103/PhysRevLett.120.185701. PubMed DOI
Chen N-K, et al. Optical subpicosecond nonvolatile switching and electron-phonon coupling in ferroelectric materials. Phys. Rev. B. 2020;102:184115. doi: 10.1103/PhysRevB.102.184115. DOI
Zhang Z, Yates Jr JT. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012;112:5520–5551. doi: 10.1021/cr3000626. PubMed DOI
Kremer G, et al. Ultrafast dynamics of the surface photovoltage in potassium-doped black phosphorus. Phys. Rev. B. 2021;104:035125. doi: 10.1103/PhysRevB.104.035125. DOI
Chen Z, et al. Spectroscopy of buried states in black phosphorus with surface doping. 2D Mater. 2020;7:035027. doi: 10.1088/2053-1583/ab8ec1. DOI
Michiardi M, et al. Optical manipulation of Rashba-split 2-dimensional electron gas. Nat. Commun. 2022;13:1–7. PubMed PMC
Shportko K, et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008;7:653–658. doi: 10.1038/nmat2226. PubMed DOI
Ebert H, Ködderitzsch D, Minár J. Calculating condensed matter properties using the KKR-Green’s function method-recent developments and applications. Rep. Prog. Phys. 2011;74:096501. doi: 10.1088/0034-4885/74/9/096501. DOI