Field-induced ultrafast modulation of Rashba coupling at room temperature in ferroelectric α-GeTe(111)

. 2022 Oct 27 ; 13 (1) : 6396. [epub] 20221027

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36302853

Grantová podpora
I 4493 Austrian Science Fund FWF - Austria
P 30960 Austrian Science Fund FWF - Austria

Odkazy

PubMed 36302853
PubMed Central PMC9613697
DOI 10.1038/s41467-022-33978-3
PII: 10.1038/s41467-022-33978-3
Knihovny.cz E-zdroje

Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, α-GeTe(111) is a non-centrosymmetric ferroelectric semiconductor for which a strong spin-orbit interaction gives rise to giant Rashba coupling. Its room temperature ferroelectricity was recently demonstrated as a route towards a new type of highly energy-efficient non-volatile memory device based on switchable polarization. Currently based on the application of an electric field, the writing and reading processes could be outperformed by the use of femtosecond light pulses requiring exploration of the possible control of ferroelectricity on this timescale. Here, we probe the room temperature transient dynamics of the electronic band structure of α-GeTe(111) using time and angle-resolved photoemission spectroscopy. Our experiments reveal an ultrafast modulation of the Rashba coupling mediated on the fs timescale by a surface photovoltage, namely an increase corresponding to a 13% enhancement of the lattice distortion. This opens the route for the control of the ferroelectric polarization in α-GeTe(111) and ferroelectric semiconducting materials in quantum heterostructures.

Zobrazit více v PubMed

Stojchevska L, et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science. 2014;344:177–180. doi: 10.1126/science.1241591. PubMed DOI

Kogar A, et al. Light-induced charge density wave in LaTe3. Nat. Phys. 2020;16:159–163. doi: 10.1038/s41567-019-0705-3. DOI

Maklar J, et al. Nonequilibrium charge-density-wave order beyond the thermal limit. Nat. Commun. 2021;12:1–8. doi: 10.1038/s41467-021-22778-w. PubMed DOI PMC

Beaulieu S, et al. Ultrafast dynamical Lifshitz transition. Sci. Adv. 2021;7:eabd9275. doi: 10.1126/sciadv.abd9275. PubMed DOI PMC

Nova T, Disa A, Fechner M, Cavalleri A. Metastable ferroelectricity in optically strained SrTiO3. Science. 2019;364:1075–1079. doi: 10.1126/science.aaw4911. PubMed DOI

Di Sante D, Barone P, Bertacco R, Picozzi S. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 2013;25:509–513. doi: 10.1002/adma.201203199. PubMed DOI

Liebmann M, et al. Giant Rashba-type spin splitting in ferroelectric GeTe (111) Adv. Mater. 2016;28:560–565. doi: 10.1002/adma.201503459. PubMed DOI

Krempaský J, et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B. 2016;94:205111. doi: 10.1103/PhysRevB.94.205111. DOI

Rojas Sánchez JC, et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 2013;4:2944. doi: 10.1038/ncomms3944. PubMed DOI

Lesne E, et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 2016;15:1261. doi: 10.1038/nmat4726. PubMed DOI

Noël P, et al. Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system. Nature. 2020;580:483–486. doi: 10.1038/s41586-020-2197-9. PubMed DOI

Varotto S, et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electron. 2021;4:740–747. doi: 10.1038/s41928-021-00653-2. DOI

Puppin M, et al. Time-and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum. 2019;90:023104. doi: 10.1063/1.5081938. PubMed DOI

Krempaský J, et al. Fully spin-polarized bulk states in ferroelectric GeTe. Phys. Rev. Research. 2020;2:013107. doi: 10.1103/PhysRevResearch.2.013107. DOI

Kremer G, et al. Unveiling the complete dispersion of the giant Rashba split surface states of ferroelectric α–GeTe(111) by alkali doping. Phys. Rev. Research. 2020;2:033115. doi: 10.1103/PhysRevResearch.2.033115. DOI

Krempaský J, et al. Triple-point fermions in ferroelectric GeTe. Phys. Rev. Lett. 2021;126:206403. doi: 10.1103/PhysRevLett.126.206403. PubMed DOI

Braun J, Minar J, Ebert H. Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission. Phys. Rep. 2018;740:1–34. doi: 10.1016/j.physrep.2018.02.007. DOI

Rinaldi C, et al. Ferroelectric control of the spin texture in GeTe. Nano Lett. 2018;18:2751–2758. doi: 10.1021/acs.nanolett.7b04829. PubMed DOI PMC

Huber T, et al. Coherent structural dynamics of a prototypical charge-density-wave-to-metal transition. Phys. Rev. Lett. 2014;113:026401. doi: 10.1103/PhysRevLett.113.026401. PubMed DOI

Nicholson CW, et al. Beyond the molecular movie: dynamics of bands and bonds during a photoinduced phase transition. Science. 2018;362:821–825. doi: 10.1126/science.aar4183. PubMed DOI

Dangic D, Hellman O, Fahy S, Savic I. The origin of the lattice thermal conductivity enhancement at the ferroelectric phase transition in GeTe. Npj Comput. Mater. 2021;7:1–8. doi: 10.1038/s41524-021-00523-7. DOI

Hu J, Vanacore GM, Yang Z, Miao X, Zewail AH. Transient structures and possible limits of data recording in phase-change materials. ACS Nano. 2015;9:6728–6737. doi: 10.1021/acsnano.5b01965. PubMed DOI

Matsubara E, et al. Initial atomic motion immediately following femtosecond-laser excitation in phase-change materials. Phys. Rev. Lett. 2016;117:135501. doi: 10.1103/PhysRevLett.117.135501. PubMed DOI

Chen N-K, et al. Directional forces by momentumless excitation and order-to-order transition in peierls-distorted solids: the case of GeTe. Phys. Rev. Lett. 2018;120:185701. doi: 10.1103/PhysRevLett.120.185701. PubMed DOI

Chen N-K, et al. Optical subpicosecond nonvolatile switching and electron-phonon coupling in ferroelectric materials. Phys. Rev. B. 2020;102:184115. doi: 10.1103/PhysRevB.102.184115. DOI

Zhang Z, Yates Jr JT. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012;112:5520–5551. doi: 10.1021/cr3000626. PubMed DOI

Kremer G, et al. Ultrafast dynamics of the surface photovoltage in potassium-doped black phosphorus. Phys. Rev. B. 2021;104:035125. doi: 10.1103/PhysRevB.104.035125. DOI

Chen Z, et al. Spectroscopy of buried states in black phosphorus with surface doping. 2D Mater. 2020;7:035027. doi: 10.1088/2053-1583/ab8ec1. DOI

Michiardi M, et al. Optical manipulation of Rashba-split 2-dimensional electron gas. Nat. Commun. 2022;13:1–7. PubMed PMC

Shportko K, et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008;7:653–658. doi: 10.1038/nmat2226. PubMed DOI

Ebert H, Ködderitzsch D, Minár J. Calculating condensed matter properties using the KKR-Green’s function method-recent developments and applications. Rep. Prog. Phys. 2011;74:096501. doi: 10.1088/0034-4885/74/9/096501. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...