Efficient magnetic switching in a correlated spin glass
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
I 4493
Austrian Science Fund FWF - Austria
P 30960
Austrian Science Fund FWF - Austria
PubMed
37779120
PubMed Central
PMC10543544
DOI
10.1038/s41467-023-41718-4
PII: 10.1038/s41467-023-41718-4
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The interplay between spin-orbit interaction and magnetic order is one of the most active research fields in condensed matter physics and drives the search for materials with novel, and tunable, magnetic and spin properties. Here we report on a variety of unique and unexpected observations in thin multiferroic Ge1-xMnxTe films. The ferrimagnetic order parameter in this ferroelectric semiconductor is found to switch direction under magnetostochastic resonance with current pulses many orders of magnitude lower as for typical spin-orbit torque systems. Upon a switching event, the magnetic order spreads coherently and collectively over macroscopic distances through a correlated spin-glass state. Utilizing these observations, we apply a novel methodology to controllably harness this stochastic magnetization dynamics.
Dept of Condensed Matter Physics Charles University Ke Karlovu 5 121 16 Praha 2 Czech Republic
Dept of Condensed Matter Physics Masaryk University Kotlářská 267 2 61137 Brno Czech Republic
Institut de Physique École Polytechnique Fédérale de Lausanne CH 1015 Lausanne Switzerland
Institut für Halbleiter und Festkörperphysik Johannes Kepler Universität A 4040 Linz Austria
Institute of Experimental Physics Slovak Academy of Sciences Watsonova 47 040 01 Košice Slovakia
Institute of Physics ASCR v v i Cukrovarnická 10 162 53 Praha 6 Czech Republic
Institute of Physics P J Šafárik University in Košice Park Angelinum 9 040 01 Košice Slovakia
Laboratory for Muon Spin Spectroscopy Paul Scherrer Institute CH 5232 Villigen PSI Switzerland
LPMS CY Cergy Paris Université 95031 Cergy Pontoise France
Max Planck Institut für Mikrostrukturphysik Weinberg 2 06120 Halle Germany
New Technologies Research Center University of West Bohemia Plzeň Czech Republic
Photon Science Division Paul Scherrer Institut CH 5232 Villigen Switzerland
See more in PubMed
Kossut, J. & Gaj, J. A. (eds.) Introduction to the Physics of Diluted Magnetic Semiconductors (Springer-Verlag Berlin Heidelberg, 2011).
Jungwirth T, et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev. Mod. Phys. 2014;86:855–896.
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 2014;86:187–251.
Picozzi S. Ferroelectric rashba semiconductors as a novel class of multifunctional materials. Front. Phys. 2014;2:10.
Zutić I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 2004;76:323–410.
Krempaský J, et al. Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Ge1−xMnxTe. Nat. Commun. 2016;7:13071. PubMed PMC
Yoshimi R, et al. Current-driven magnetization switching in ferromagnetic bulk Rashba semiconductor (Ge,Mn)Te. Sci. Adv. 2018;4:eaat9989. PubMed PMC
Pawley GS, Cochran W, Cowley RA, Dolling G. Diatomic ferroelectrics. Phys. Rev. Lett. 1966;17:753–755.
Krempaský J, et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B. 2016;94:205111.
Krempaský J, et al. Operando imaging of all-electric spin texture manipulation in ferroelectric and multiferroic rashba semiconductors. Phys. Rev. X. 2018;8:021067.
Krempaský J, et al. Fully spin-polarized bulk states in ferroelectric GeTe. Phys. Rev. Res. 2020;2:013107.
Przybylińska H, et al. Magnetic-field-induced ferroelectric polarization reversal in the multiferroic Ge1-xMnxTe semiconductor. Phys. Rev. Lett. 2014;112:047202. PubMed
Kriegner D, et al. Ferroelectric phase transitions in multiferroic Ge1−xMnxTe driven by local lattice distortions. Phys. Rev. B. 2016;94:054112. PubMed PMC
Krempaský J, et al. Spin-resolved electronic structure of ferroelectric GeTe and multiferroic (Ge,Mn)Te. J. Phys. Chem. Solids. 2019;128:237–244.
Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous hall effect. Rev. Mod. Phys. 2010;82:1539–1592.
Fukuma Y, et al. X-ray magnetic circular dichroism of ferromagnetic semiconductor ge(1-x)mnxte. AIP Conf. Proc. 2005;772:349–350.
Sato H, et al. Mn 3d states in ferromagnetic semiconductor ge1-xmnxTe investigated by mn 2p-3d soft x-ray magnetic circular dichroism spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2005;144-147:727–729.
Fukuma Y, et al. Local environment of mn atoms in iv-vi ferromagnetic semiconductor ge1-xmnxTe. J. Appl. Phys. 2006;99:08D510.
Fukuma Y, et al. Carrier-induced ferromagnetism in ge0.92Mn0.08Te epilayers with a curie temperature up to 190k. Appl. Phys. Lett. 2009;94:269901.
Fukushima T, et al. First principles studies of GeTe based dilute magnetic semiconductors. J. Condens. Matter Phys. 2014;27:015501. PubMed
Yoshimi R, et al. Nonreciprocal electrical transport in the multiferroic semiconductor (Ge,Mn)Te. Phys. Rev. B. 2022;106:115202.
Brey L. Magnetic skyrmionic polarons. Nano Lett. 2017;17:7358–7363. PubMed
Galazka RR, Nagata S, Keesom PH. Paramagnetic spin-glass antiferromagnetic phase transitions in Cd1−xMnxTe from specific heat and magnetic susceptibility measurements. Phys. Rev. B. 1980;22:3344–3355.
Natterer FD, Donati F, Patthey F, Brune H. Thermal and magnetic-field stability of holmium single-atom magnets. Phys. Rev. Lett. 2018;121:027201. PubMed
Hermenau J, et al. Stabilizing spin systems via symmetrically tailored RKKY interactions. Nat. Commun. 2019;10:2565. PubMed PMC
Freeman AA, et al. Depth dependence of the mn valence and mn-mn coupling in (Ga,Mn)N. Phys. Rev. B. 2007;76:081201.
van der Laan G, Figueroa AI. X-ray magnetic circular dichroism—a versatile tool to study magnetism. Coord. Chem. Rev. 2014;277-278:95–129.
Edmonds K, van der Laan G, Panaccione G. Electronic structure of (Ga,Mn)As as seen by synchrotron radiation. Semiconduc. Sci. Technol. 2015;30:043001.
Antonov V, Shpak A, Bekenov L, Germash L, Yaresko A. Electronic structure and x-ray magnetic circular dichroism in (Ge,Mn)Te diluted magnetic semiconductors. Condens. Matter Phys. 2010;13:1–8.
Kriener M, et al. Heat-treatment-induced switching of magnetic states in the doped polar semiconductor Ge1−xMnxTe. Sci. Rep. 2016;6:25748. PubMed PMC
Trygg J, Johansson B, Eriksson O, Wills JM. Total energy calculation of the magnetocrystalline anisotropy energy in the ferromagnetic 3d metals. Phys. Rev. Lett. 1995;75:2871–2874. PubMed
Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev. Mod. Phys. 1998;70:223–287.
Song H, Huang S, Liu X. Stochastic resonance in two-frequency signal systems. Int. J. Mod. Phys. B. 2016;30:1650113.
von Baltz R, Kraut W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B. 1981;23:5590–5596.
Gong S-J, Zheng F, Rappe AM. Phonon influence on bulk photovoltaic effect in the ferroelectric semiconductor GeTe. Phys. Rev. Lett. 2018;121:017402. PubMed
Kriegner D, et al. Ferroelectric self-poling in GeTe films and crystals. Crystals. 2019;9:335.
Orlova N, Timonina A, Kolesnikov N, Deviatov E. Dynamic negative capacitance response in GeTe Rashba ferroelectric. Phys. B: Condens. Matter. 2022;647:414358.
Hoffmann M, Slesazeck S, Mikolajick T. Progress and future prospects of negative capacitance electronics: a materials perspective. APL Mater. 2021;9:020902.
Grigorenko A, Nikitin P. Stochastic resonance in a bistable magnetic system. IEEE Trans. Magn. 1995;31:2491–2493.
Krempaský J, et al. Synchronized monochromator and insertion device energy scans at SLS. AIP Conf. Proc. 2010;1234:705–708.
Thole BT, Carra P, Sette F, van der Laan G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992;68:1943–1946. PubMed
Carra P, Thole BT, Altarelli M, Wang X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 1993;70:694–697. PubMed
Yu X, et al. Aggregation and collapse dynamics of skyrmions in a non-equilibrium state. Nat. Phys. 2018;14:832–836.
Vincent, E. & Dupuis, V. Spin Glasses: Experimental Signatures and Salient Outcomes (Springer International Publishing, 2018).
Verlhac B, et al. Thermally induced magnetic order from glassiness in elemental neodymium. Nat. Phys. 2022;18:905–911.
Ochoa H, Zarzuela R, Tserkovnyak Y. Spin hydrodynamics in amorphous magnets. Phys. Rev. B. 2018;98:054424.
Maniv E, et al. Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass. Sci. Adv. 2021;7:eabd8452. PubMed PMC
Piamonteze C, et al. X-Treme beamline at SLS: X-ray magnetic circular and linear dichroism at high field and low temperature. J. Synchrotron Radiat. 2012;19:661–674. PubMed
Prokscha T, et al. The new μE4 beam at PSI: a hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nuc. Inst. Phys. A. 2008;595:317–331.
Saadaoui H, et al. Zero-field spin depolarization of low-energy muons in ferromagnetic nickel and silver metal. Phys. Procedia. 2012;30:164–167.
Suter A, Wojek B. Musrfit: A free platform-independent framework for usr data analysis. Phys. Procedia. 2012;30:69–73.
Ebert H, Ködderitzsch D, Minár J. Calculating condensed matter properties using the KKR-Green’s function method–recent developments and applications. Rep. Prog. Phys. 2011;74:096501.
Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200–1211.
Soven P. Coherent-potential model of substitutional disordered alloys. Phys. Rev. 1967;156:809–813.
Taylor DW. Vibrational properties of imperfect crystals with large defect concentrations. Phys. Rev. 1967;156:1017–1029.
Johnston W, Sestrich D. The MnTe-GeTe phase diagram. J. Inorg. Nucl. Chem. 1961;19:229–236.
Goering E. X-ray magnetic circular dichroism sum rule correction for the light transition metals. Philos. Mag. 2005;85:2895–2911.
Liechtenstein A, Katsnelson M, Antropov V, Gubanov V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 1987;67:65–74.
Belhadji B, et al. Trends of exchange interactions in dilute magnetic semiconductors. J. Phys. Condens. Matter Phys. 2007;19:436227.