Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1-x)Mn(x))2Se3
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26892831
PubMed Central
PMC4762886
DOI
10.1038/ncomms10559
PII: ncomms10559
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1-x)Mn(x))2Se3 is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.
Department Chemie Ludwig Maximilians Universität München Butenandtstr 5 13 81377 München Germany
Department of Chemistry Moscow State University Leninskie Gory 1 3 119991 Moscow Russia
Department of Condensed Matter Physics Charles University Ke Karlovu 5 12116 Prague Czech Republic
Zobrazit více v PubMed
Hasan M. Z. & Kane C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi X.-L. & Zhang S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Lee W. C., Wu C., Arovas D. P. & Zhang S. C. Quasiparticle interference on the surface of the topological insulator Bi2Te3. Phys. Rev. B 80, 245439 (2009).
Biswas R. R. & Balatsky A. V. Impurity-induced states on the surface of three-dimensional topological insulators. Phys. Rev. B 81, 233405 (2010).
Lu J., Shan W.-Y., Lu H.-Z. & Shen S.-Q. Non-magnetic impurities and in-gap bound states in topological insulators. New J. Phys. 13, 103016 (2011).
König M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007). PubMed
Liu C.-X., Qi X.-L., Dai X., Fang Z. & Zhang S.-C. Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys. Rev. Lett. 101, 146802 (2008). PubMed
Du L., Knez I., Sullivan G. & Du R.-R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015). PubMed
Liu Q., Liu C. X., Xu C. K., Qi X. L. & Zhang S. C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009). PubMed
Wray L. A. et al. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nat. Phys. 7, 32–37 (2011).
Chen Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010). PubMed
Scholz M. R. et al. Tolerance of topological surface states towards magnetic moments: Fe on Bi2Se3. Phys. Rev. Lett. 108, 256810 (2012). PubMed
Valla T., Pan Z.-H., Gardner D., Lee Y. S. & Chu S. Photoemission Spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator. Phys. Rev. Lett. 108, 117601 (2012). PubMed
Scholz M. R. et al. Intact Dirac cone of Bi2Te3 covered with a monolayer Fe. Phys. Status Solidi RRL 7, 139–141 (2013).
Honolka J. et al. In-plane magnetic anisotropy of Fe atoms on Bi2Se3 (111). Phys. Rev. Lett. 108, 256811 (2012). PubMed
Kulbachinskii V. A. et al. Ferromagnetic transition in the new diluted magnetic semiconductor p-Bi2−xFexTe3. Phys. Lett. A 285, 173–176 (2001).
Kulbachinskii V. A. et al. Ferromagnetism in new diluted magnetic semiconductor Bi2−xFexTe3. Physica B 311, 292–297 (2002).
Hor Y. S. et al. Development of ferromagnetism in the doped topological insulator Bi2−xFexTe3. Phys. Rev. B 81, 195203 (2010).
Dyck J. S., Hájek P., Lošták P. & Uher C. Diluted magnetic semiconductors based on Sb2−xVxTe3 (0.01<x<0.03). Phys. Rev. B 65, 115212 (2002).
Xu S.-Y. et al. Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012).
Checkelsky J. G., Ye J., Onose Y., Iwasa Y. & Tokura Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012).
Hüfner S. Photoelectron Spectroscopy: Principles and Applications Springer (1995).
Rosenberg G. & Franz M. Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys. Rev. B 85, 195119 (2012).
Yu R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010). PubMed
Chang C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013). PubMed
Qi X. L., Hughes T. L. & Zhang S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).
Pankratov O. A. Supersymmetric inhomogeneous semiconductor structures and the nature of a parity anomaly in (2+1) electrodynamics. Phys. Lett. A 121, 360–366 (1987).
Qi X.-L., Li R., Zang J. & Zhang S.-C. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009). PubMed
Zang J. & Nagaosa N. Monopole current and unconventional Hall response on a topological insulator. Phys. Rev. B 81, 245125 (2010).
Cho G. Y. Possible topological phases of bulk magnetically doped Bi2Se3: turning a topological band insulator into the Weyl semimetal. Preprint at http://arxiv.org/abs/1110.1939 (2011).
Rader O. et al. Identification of extrinsic Mn contributions in Ga1−xMnxAs by field-dependent magnetic circular x-ray dichroism. J. Electron Spectr. Relat. Phenom. 144, 789–792 (2005).
Watson M. D. et al. Study of the structural, electric and magnetic properties of Mn-doped Bi2Te3 single crystals. New J. Phys. 15, 103016 (2013).
Sato T. et al. Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator. Nat. Phys. 7, 840–844 (2011).
Brahlek M. et al. Topological-metal to band-insulator transition in (Bi1−xInx)2Se3 thin films. Phys. Rev. Lett. 109, 186403 (2012). PubMed
Bianchi M., Hatch R. C., Mi J., Iversen B. B. & Hofmann P. Simultaneous quantization of bulk conduction and valence states through adsorption of nonmagnetic impurities on Bi2Se3. Phys. Rev. Lett. 107, 086802 (2011). PubMed
Schmidt T. M., Miwa R. H. & Fazzio A. Spin texture and magnetic anisotropy of Co impurities in Bi2Se3 topological insulators. Phys. Rev. B 84, 245418 (2011).
Henk J. et al. Topological character and magnetism of the Dirac state in Mn-doped Bi2Te3. Phys. Rev. Lett. 109, 076801 (2012). PubMed
Abdalla L. B., Seixas L., Schmidt T. M., Miwa R. H. & Fazzio A. Topological insulator Bi2Se3(111) surface doped with transition metals: an ab-initio investigation. Phys. Rev. B 88, 045312 (2013).
Beidenkopf H. et al. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat. Phys. 7, 939–943 (2011).
Zhang Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 6, 584–588 (2010).
Eremeev S. V., Vergniory M. G., Menshchikova T. V., Shaposhnikov A. A. & Chulkov E. V. The effect of van der Waal's gap expansions on the surface electronic structure of layered topological insulators. New J. Phys. 14, 113030 (2012).
Black-Schaffer A. M. & Balatsky A. V. Strong potential impurities on the surface of a topological insulator. Phys. Rev. B 85, 121103(R) (2012).
Black-Schaffer A. M. & Balatsky A. V. Subsurface impurities and vacancies in a three-dimensional topological insulator. Phys. Rev. B 86, 115433 (2012).
Gray A. X. et al. Bulk electronic structure of the dilute magnetic semiconductor Ga1−xMnxAs through hard x-ray angle-resolved photoemission. Nat. Mater. 11, 957–962 (2012). PubMed
Ebert H., Ködderitzsch D. & Minár J. Calculating condensed matter properties using the KKR–Green's function method–recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).
Ebert H. et al. The Munich SPR-KKR package, version 6.3. Available at http://ebert.cup.uni-muenchen.de/SPRKKR.
Twin Domain Structure in Magnetically Doped Bi2Se3 Topological Insulator
Interface-Induced Phenomena in Magnetism