Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1-x)Mn(x))2Se3
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26892831
PubMed Central
PMC4762886
DOI
10.1038/ncomms10559
PII: ncomms10559
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1-x)Mn(x))2Se3 is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.
Department Chemie Ludwig Maximilians Universität München Butenandtstr 5 13 81377 München Germany
Department of Chemistry Moscow State University Leninskie Gory 1 3 119991 Moscow Russia
Department of Condensed Matter Physics Charles University Ke Karlovu 5 12116 Prague Czech Republic
Zobrazit více v PubMed
Hasan M. Z. & Kane C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi X.-L. & Zhang S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Lee W. C., Wu C., Arovas D. P. & Zhang S. C. Quasiparticle interference on the surface of the topological insulator Bi
Biswas R. R. & Balatsky A. V. Impurity-induced states on the surface of three-dimensional topological insulators. Phys. Rev. B 81, 233405 (2010).
Lu J., Shan W.-Y., Lu H.-Z. & Shen S.-Q. Non-magnetic impurities and in-gap bound states in topological insulators. New J. Phys. 13, 103016 (2011).
König M. PubMed
Liu C.-X., Qi X.-L., Dai X., Fang Z. & Zhang S.-C. Quantum anomalous Hall effect in Hg PubMed
Du L., Knez I., Sullivan G. & Du R.-R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015). PubMed
Liu Q., Liu C. X., Xu C. K., Qi X. L. & Zhang S. C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009). PubMed
Wray L. A.
Chen Y. L. PubMed
Scholz M. R. PubMed
Valla T., Pan Z.-H., Gardner D., Lee Y. S. & Chu S. Photoemission Spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi PubMed
Scholz M. R.
Honolka J. PubMed
Kulbachinskii V. A.
Kulbachinskii V. A.
Hor Y. S.
Dyck J. S., Hájek P., Lošták P. & Uher C. Diluted magnetic semiconductors based on Sb
Xu S.-Y.
Checkelsky J. G., Ye J., Onose Y., Iwasa Y. & Tokura Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012).
Hüfner S. Photoelectron Spectroscopy: Principles and Applications Springer (1995).
Rosenberg G. & Franz M. Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys. Rev. B 85, 195119 (2012).
Yu R. PubMed
Chang C.-Z. PubMed
Qi X. L., Hughes T. L. & Zhang S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).
Pankratov O. A. Supersymmetric inhomogeneous semiconductor structures and the nature of a parity anomaly in (2+1) electrodynamics. Phys. Lett. A 121, 360–366 (1987).
Qi X.-L., Li R., Zang J. & Zhang S.-C. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009). PubMed
Zang J. & Nagaosa N. Monopole current and unconventional Hall response on a topological insulator. Phys. Rev. B 81, 245125 (2010).
Cho G. Y. Possible topological phases of bulk magnetically doped Bi
Rader O.
Watson M. D.
Sato T.
Brahlek M. PubMed
Bianchi M., Hatch R. C., Mi J., Iversen B. B. & Hofmann P. Simultaneous quantization of bulk conduction and valence states through adsorption of nonmagnetic impurities on Bi PubMed
Schmidt T. M., Miwa R. H. & Fazzio A. Spin texture and magnetic anisotropy of Co impurities in Bi
Henk J. PubMed
Abdalla L. B., Seixas L., Schmidt T. M., Miwa R. H. & Fazzio A. Topological insulator Bi
Beidenkopf H.
Zhang Y.
Eremeev S. V., Vergniory M. G., Menshchikova T. V., Shaposhnikov A. A. & Chulkov E. V. The effect of van der Waal's gap expansions on the surface electronic structure of layered topological insulators. New J. Phys. 14, 113030 (2012).
Black-Schaffer A. M. & Balatsky A. V. Strong potential impurities on the surface of a topological insulator. Phys. Rev. B 85, 121103(R) (2012).
Black-Schaffer A. M. & Balatsky A. V. Subsurface impurities and vacancies in a three-dimensional topological insulator. Phys. Rev. B 86, 115433 (2012).
Gray A. X. PubMed
Ebert H., Ködderitzsch D. & Minár J. Calculating condensed matter properties using the KKR–Green's function method–recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).
Ebert H.
Twin Domain Structure in Magnetically Doped Bi2Se3 Topological Insulator
Interface-Induced Phenomena in Magnetism