Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1-x)Mn(x))2Se3

. 2016 Feb 19 ; 7 () : 10559. [epub] 20160219

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26892831

Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1-x)Mn(x))2Se3 is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.

Zobrazit více v PubMed

Hasan M. Z. & Kane C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

Qi X.-L. & Zhang S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

Lee W. C., Wu C., Arovas D. P. & Zhang S. C. Quasiparticle interference on the surface of the topological insulator Bi

Biswas R. R. & Balatsky A. V. Impurity-induced states on the surface of three-dimensional topological insulators. Phys. Rev. B 81, 233405 (2010).

Lu J., Shan W.-Y., Lu H.-Z. & Shen S.-Q. Non-magnetic impurities and in-gap bound states in topological insulators. New J. Phys. 13, 103016 (2011).

König M. PubMed

Liu C.-X., Qi X.-L., Dai X., Fang Z. & Zhang S.-C. Quantum anomalous Hall effect in Hg PubMed

Du L., Knez I., Sullivan G. & Du R.-R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015). PubMed

Liu Q., Liu C. X., Xu C. K., Qi X. L. & Zhang S. C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009). PubMed

Wray L. A.

Chen Y. L. PubMed

Scholz M. R. PubMed

Valla T., Pan Z.-H., Gardner D., Lee Y. S. & Chu S. Photoemission Spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi PubMed

Scholz M. R.

Honolka J. PubMed

Kulbachinskii V. A.

Kulbachinskii V. A.

Hor Y. S.

Dyck J. S., Hájek P., Lošták P. & Uher C. Diluted magnetic semiconductors based on Sb

Xu S.-Y.

Checkelsky J. G., Ye J., Onose Y., Iwasa Y. & Tokura Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012).

Hüfner S. Photoelectron Spectroscopy: Principles and Applications Springer (1995).

Rosenberg G. & Franz M. Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys. Rev. B 85, 195119 (2012).

Yu R. PubMed

Chang C.-Z. PubMed

Qi X. L., Hughes T. L. & Zhang S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

Pankratov O. A. Supersymmetric inhomogeneous semiconductor structures and the nature of a parity anomaly in (2+1) electrodynamics. Phys. Lett. A 121, 360–366 (1987).

Qi X.-L., Li R., Zang J. & Zhang S.-C. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009). PubMed

Zang J. & Nagaosa N. Monopole current and unconventional Hall response on a topological insulator. Phys. Rev. B 81, 245125 (2010).

Cho G. Y. Possible topological phases of bulk magnetically doped Bi

Rader O.

Watson M. D.

Sato T.

Brahlek M. PubMed

Bianchi M., Hatch R. C., Mi J., Iversen B. B. & Hofmann P. Simultaneous quantization of bulk conduction and valence states through adsorption of nonmagnetic impurities on Bi PubMed

Schmidt T. M., Miwa R. H. & Fazzio A. Spin texture and magnetic anisotropy of Co impurities in Bi

Henk J. PubMed

Abdalla L. B., Seixas L., Schmidt T. M., Miwa R. H. & Fazzio A. Topological insulator Bi

Beidenkopf H.

Zhang Y.

Eremeev S. V., Vergniory M. G., Menshchikova T. V., Shaposhnikov A. A. & Chulkov E. V. The effect of van der Waal's gap expansions on the surface electronic structure of layered topological insulators. New J. Phys. 14, 113030 (2012).

Black-Schaffer A. M. & Balatsky A. V. Strong potential impurities on the surface of a topological insulator. Phys. Rev. B 85, 121103(R) (2012).

Black-Schaffer A. M. & Balatsky A. V. Subsurface impurities and vacancies in a three-dimensional topological insulator. Phys. Rev. B 86, 115433 (2012).

Gray A. X. PubMed

Ebert H., Ködderitzsch D. & Minár J. Calculating condensed matter properties using the KKR–Green's function method–recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).

Ebert H.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...