Using whole-genome SNP data to reconstruct a large multi-generation pedigree in apple germplasm
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FP7-KBBE-2010 No. 265582
EU Seventh Framework Programme
PubMed
31898487
PubMed Central
PMC6941274
DOI
10.1186/s12870-019-2171-6
PII: 10.1186/s12870-019-2171-6
Knihovny.cz E-zdroje
- Klíčová slova
- Empirical selection, Founders, Genotyping, Germplasm collection, Malus domestica, Modern breeding, Parent-offspring, Parentage analysis,
- MeSH
- chov MeSH
- genom rostlinný * MeSH
- genotyp MeSH
- genotypizační techniky metody MeSH
- jednonukleotidový polymorfismus genetika MeSH
- Malus genetika MeSH
- rodokmen MeSH
- sekvenování celého genomu MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Apple (Malus x domestica Borkh.) is one of the most important fruit tree crops of temperate areas, with great economic and cultural value. Apple cultivars can be maintained for centuries in plant collections through grafting, and some are thought to date as far back as Roman times. Molecular markers provide a means to reconstruct pedigrees and thus shed light on the recent history of migration and trade of biological materials. The objective of the present study was to identify relationships within a set of over 1400 mostly old apple cultivars using whole-genome SNP data (~ 253 K SNPs) in order to reconstruct pedigrees. RESULTS: Using simple exclusion tests, based on counting the number of Mendelian errors, more than one thousand parent-offspring relations and 295 complete parent-offspring families were identified. Additionally, a grandparent couple was identified for the missing parental side of 26 parent-offspring pairings. Among the 407 parent-offspring relations without a second identified parent, 327 could be oriented because one of the individuals was an offspring in a complete family or by using historical data on parentage or date of recording. Parents of emblematic cultivars such as 'Ribston Pippin', 'White Transparent' and 'Braeburn' were identified. The overall pedigree combining all the identified relationships encompassed seven generations and revealed a major impact of two Renaissance cultivars of French and English origin, namely 'Reinette Franche' and 'Margil', and one North-Eastern Europe cultivar from the 1700s, 'Alexander'. On the contrary, several older cultivars, from the Middle Ages or the Roman times, had no, or only single, identifiable offspring in the set of studied accessions. Frequent crosses between cultivars originating from different European regions were identified, especially from the nineteenth century onwards. CONCLUSIONS: The availability of over 1400 apple genotypes, previously filtered for genetic uniqueness and providing a broad representation of European germplasm, has been instrumental for the success of this large pedigree reconstruction. It enlightens the history of empirical selection and recent breeding of apple cultivars in Europe and provides insights to speed-up future breeding and selection.
CRA W Centre Wallon de Recherches Agronomiques Plant Breeding and Biodiversity Gembloux Belgium
Department of Agricultural and Food Sciences University of Bologna Bologna Italy
Fondazione Edmund Mach San Michele all'Adige Trento Italy
IRHS INRA Agrocampus Ouest Université d'Angers SFR 4207 QuaSaV Beaucouzé France
Les Croqueurs de Pommes du Confluent Ain Isère Savoie Les Avenières France
RBIPH Research and Breeding Institute of Pomology Holovousy Ltd Horice Czech Republic
School of Agriculture Policy and Development University of Reading Whiteknights Reading UK
Zobrazit více v PubMed
Visscher PM, Hill WG, Wray NR. Heritability in the genomics era - concepts and misconceptions. Nat Rev Genet. 2008;9(4):255–266. doi: 10.1038/nrg2322. PubMed DOI
Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2006;2(3):e41. doi: 10.1371/journal.pgen.0020041. PubMed DOI PMC
Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol Ecol. 2014;23(14):3434–3451. doi: 10.1111/mec.12827. PubMed DOI PMC
Fernández J, Villanueva B, Pong-Wong R, Toro MÁ. Efficiency of the use of pedigree and molecular marker information in conservation programs. Genetics. 2005;170(3):1313–1321. doi: 10.1534/genetics.104.037325. PubMed DOI PMC
Lucena-Perez M, Soriano L, López-Bao JV, Marmesat E, Fernández L, Palomares F, et al. Reproductive biology and genealogy in the endangered Iberian lynx: implications for conservation. Mamm Biol. 2018;89:7–13. doi: 10.1016/j.mambio.2017.11.006. DOI
Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel C-E, Kouassi AB, et al. Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet. 2014;127(5):1073–1090. doi: 10.1007/s00122-014-2281-3. PubMed DOI
Bink MCAM, Boer MP, ter Braak CJF, Jansen J, Voorrips RE, van de Weg WE. Bayesian analysis of complex traits in pedigreed plant populations. Euphytica. 2008;161(1–2):85–96. doi: 10.1007/s10681-007-9516-1. DOI
Peace CP, Luby JJ, van de WWE, MC a. M B, Iezzoni AF. A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Genet Genomes. 2014;10:1679. doi: 10.1007/s11295-014-0788-z. DOI
Dussault FM, Boulding EG. Effect of minor allele frequency on the number of single nucleotide polymorphisms needed for accurate parentage assignment: a methodology illustrated using Atlantic salmon. Aquac Res. 2018;49(3):1368–1372. doi: 10.1111/are.13566. DOI
McClure MC, McCarthy J, Flynn P, McClure JC, Dair E, O’Connell DK, et al. SNP data quality control in a National Beef and dairy cattle system and highly accurate SNP based parentage verification and identification. Front Genet. 2018;9:84. doi: 10.3389/fgene.2018.00084. PubMed DOI PMC
Calus MP, Mulder HA, Bastiaansen JW. Identification of Mendelian inconsistencies between SNP and pedigree information of sibs. Genet Sel Evol. 2011;43:34. doi: 10.1186/1297-9686-43-34. PubMed DOI PMC
Hickey JM, Cleveland MA, Maltecca C, Gorjanc G, Gredler B, Kranis A. Genotype Imputation to Increase Sample Size in Pedigreed Populations. In: Gondro C, van der Werf J, Hayes B, editors. Genome-Wide Association Studies and Genomic Prediction. Totowa: Humana Press; 2013. PubMed
Ellstrand NC. Multiple paternity within the fruits of the wild radish, Raphanus sativus. Am Nat. 1984;123(6):819–828. doi: 10.1086/284241. DOI
Gowaty PA, Karlin AA. Multiple maternity and paternity in single broods of apparently monogamous eastern bluebirds (Sialia sialis) Behav Ecol Sociobiol. 1984;15(2):91–95. doi: 10.1007/BF00299374. DOI
Burke T, Bruford MW. DNA fingerprinting in birds. Nature. 1987;327(6118):149–152. doi: 10.1038/327149a0. PubMed DOI
Jeffreys AJ, Morton DB. DNA fingerprints of dogs and cats. Anim Genet. 1987;18(1):1–15. doi: 10.1111/j.1365-2052.1987.tb00739.x. PubMed DOI
Nybom H, Schaal BA. DNA “fingerprints” applied to paternity analysis in apples (Malus x domestica) Theor Appl Genet. 1990;79(6):763–768. doi: 10.1007/BF00224242. PubMed DOI
Lacombe T, Boursiquot J-M, Laucou V, Vecchi-Staraz MD, Péros J-P, This P. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.) Theor Appl Genet. 2013;126(2):401–414. doi: 10.1007/s00122-012-1988-2. PubMed DOI
Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, et al. Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome. 2000;43(3):512–520. doi: 10.1139/g00-010. PubMed DOI
Howard NP, van de Weg E, Bedford DS, Peace CP, Vanderzande S, Clark MD, et al. Elucidation of the ‘Honeycrisp’ pedigree through haplotype analysis with a multi-family integrated SNP linkage map and a large apple (Malus × domestica) pedigree-connected SNP data set. Hortic Res. 2017;4:17003. doi: 10.1038/hortres.2017.3. PubMed DOI PMC
Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, et al. Genetic structure and domestication history of the grape. Proc Natl Acad Sci. 2011;108(9):3530–3535. doi: 10.1073/pnas.1009363108. PubMed DOI PMC
Telfer EJ, Stovold GT, Li Y, Silva-Junior OB, Grattapaglia DG, Dungey HS. Parentage reconstruction in Eucalyptus nitens using SNPs and microsatellite markers: a comparative analysis of marker data power and robustness. PLoS One. 2015;10(7):e0130601. doi: 10.1371/journal.pone.0130601. PubMed DOI PMC
Jones AG, Small CM, Paczolt KA, Ratterman NL. A practical guide to methods of parentage analysis. Mol Ecol Resour. 2010;10(1):6–30. doi: 10.1111/j.1755-0998.2009.02778.x. PubMed DOI
Cornille A, Gladieux P, Smulders MJM, Roldán-Ruiz I, Laurens F, Le Cam B, et al. New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet. 2012;8(5):e1002703. doi: 10.1371/journal.pgen.1002703. PubMed DOI PMC
Juniper BE, Mabberley DJ. The story of the apple [internet] Portland: Timber Press; 2006.
Leroy A. Dictionnaire de pomologie: contenant l’histoire, la description, la figure des fruits anciens et des fruits modernes les plus généralement connus et cultivés. Paris: Imprimerie Lachèse, Belleuvre et Dolbeau; 1873.
Smith M. National Apple Registry of the United Kingdom. Ministry of Agriculture, Fisheries and Food: London; 1971.
Morgan J, Richards A. The new book of apples: the definitive guide to apples, including over 2000 varieties. Ebury. 2002. p. 328.
Roach FA. Cultivated fruits of Britain: their origin and history. Oxford: Blackwell; 1985. p. 349.
Gross BL, Henk AD, Richards CM, Fazio G, Volk GM. Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. Am J Bot. 2014;101(10):1770–1779. doi: 10.3732/ajb.1400297. PubMed DOI
Noiton DAM, Alspach PA. Founding clones, inbreeding, Coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci. 1996;121(5):773–782. doi: 10.21273/JASHS.121.5.773. DOI
Urrestarazu J, Denancé C, Ravon E, Guyader A, Guisnel R, Feugey L, et al. Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol. 2016;16:130. doi: 10.1186/s12870-016-0818-0. PubMed DOI PMC
Volk GM, Bramel P. A strategy to conserve worldwide apple genetic resources: survey results. Acta Hortic. 2017;1172:99–106. doi: 10.17660/ActaHortic.2017.1172.18. DOI
Way RD, Aldwinckle HS, Lamb RC, Rejman A, Sansavini S, Shen T, et al. APPLES (MALUS) Acta Hortic. 1991;290:3–46. doi: 10.17660/ActaHortic.1991.290.1. DOI
Bühlmann A, Gassmann J, Ingenfeld A, Hunziker K, Kellerhals M, Frey JE. Molecular characterisation of the Swiss fruit genetic resources. Erwerbs-Obstbau. 2015;57(1):29–34. doi: 10.1007/s10341-015-0230-1. DOI
Ferreira V, Ramos-Cabrer AM, Carnide V, Pinto-Carnide O, Assunção A, Marreiros A, et al. Genetic pool structure of local apple cultivars from Portugal assessed by microsatellites. Tree Genet Genomes. 2016;12(3):1–15. doi: 10.1007/s11295-016-0997-8. DOI
Garkava-Gustavsson L, Kolodinska Brantestam A, Sehic J, Nybom H. Molecular characterisation of indigenous Swedish apple cultivars based on SSR and S-allele analysis. Hereditas. 2008;145(3):99–112. doi: 10.1111/j.0018-0661.2008.02042.x. PubMed DOI
Larsen B, Toldam-Andersen TB, Pedersen C, Ørgaard M. Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection. Tree Genet Genomes. 2017;13(1):14. doi: 10.1007/s11295-016-1087-7. DOI
Lassois L, Denancé C, Ravon E, Guyader A, Guisnel R, Hibrand-Saint-Oyant L, et al. Genetic diversity, population structure, parentage analysis, and construction of Core collections in the French apple Germplasm based on SSR markers. Plant Mol Biol Report. 2016;34(4):827–844. doi: 10.1007/s11105-015-0966-7. DOI
Liang W, Dondini L, Franceschi PD, Paris R, Sansavini S, Tartarini S. Genetic diversity, population structure and construction of a Core collection of apple cultivars from Italian Germplasm. Plant Mol Biol Report. 2015;33(3):458–473. doi: 10.1007/s11105-014-0754-9. DOI
Marconi G, Ferradini N, Russi L, Concezzi L, Veronesi F, Albertini E. Genetic characterization of the apple Germplasm collection in Central Italy: the value of local varieties. Front Plant Sci. 2018;9:1460. doi: 10.3389/fpls.2018.01460. PubMed DOI PMC
Patzak J, Paprštein F, Henychová A, Sedlák J, Somers D. Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus × domestica) genetic resources. Genome. 2012;55(9):647–665. doi: 10.1139/g2012-054. PubMed DOI
Pina A, Urrestarazu J, Errea P. Analysis of the genetic diversity of local apple cultivars from mountainous areas from Aragon (northeastern Spain) Sci Hortic. 2014;174:1–9. doi: 10.1016/j.scienta.2014.04.037. DOI
Potts SM, Han Y, Khan MA, Kushad MM, Rayburn AL, Korban SS. Genetic diversity and characterization of a Core collection of Malus Germplasm using simple sequence repeats (SSRs) Plant Mol Biol Report. 2012;30(4):827–837. doi: 10.1007/s11105-011-0399-x. DOI
van Treuren R, Kemp H, Ernsting G, Jongejans B, Houtman H, Visser L. Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet Resour Crop Evol. 2010;57(6):853–865. doi: 10.1007/s10722-009-9525-0. DOI
Urrestarazu J, Miranda C, Santesteban L, Royo J. Genetic diversity and structure of local apple cultivars from northeastern Spain assessed by microsatellite markers. Tree Genet Genomes. 2012;8(6):1163–1180. doi: 10.1007/s11295-012-0502-y. DOI
Vanderzande S, Micheletti D, Troggio M, Davey MW, Keulemans J. Genetic diversity, population structure, and linkage disequilibrium of elite and local apple accessions from Belgium using the IRSC array. Tree Genet Genomes. 2017;13(6):125. doi: 10.1007/s11295-017-1206-0. DOI
Pereira-Lorenzo S, Urrestarazu J, Ramos-Cabrer A. M., Miranda C, Pina a, Dapena E, et al. analysis of the genetic diversity and structure of the Spanish apple genetic resources suggests the existence of an Iberian genepool. Ann Appl Biol. 2017;171(3):424–440. doi: 10.1111/aab.12385. DOI
Baric S, Storti A, Hofer M, Dalla VJ. Resolving the Parentage of the Apple Cultivar ‘Meran. Erwerbs-Obstbau. 2012;54(3):143–146. doi: 10.1007/s10341-012-0167-6. DOI
Cabe PR, Baumgarten A, Onan K, Luby JJ, Bedford DS. Using microsatellite analysis to Verify breeding records: a study of `Honeycrisp’ and other cold-hardy apple cultivars. HortScience. 2005;40(1):15–17. doi: 10.21273/HORTSCI.40.1.15. DOI
Evans K, Patocchi A, Rezzonico F, Mathis F, Durel C, Fernández-Fernández F, et al. Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Mol Breed. 2011;28(4):535–547. doi: 10.1007/s11032-010-9502-5. DOI
Salvi S, Micheletti D, Magnago P, Fontanari M, Viola R, Pindo M, et al. One-step reconstruction of multi-generation pedigree networks in apple (Malus × domestica Borkh.) and the parentage of Golden delicious. Mol Breed. 2014;34(2):511–524. doi: 10.1007/s11032-014-0054-y. DOI
Pikunova A, Madduri M, Sedov E, Noordijk Y, Peil A, Troggio M, et al. ‘Schmidt’s Antonovka’ is identical to ‘common Antonovka’, an apple cultivar widely used in Russia in breeding for biotic and abiotic stresses. Tree Genet Genomes. 2014;10(2):261–271. doi: 10.1007/s11295-013-0679-8. DOI
Ordidge M, Kirdwichai P, Baksh MF, Venison EP, Gibbings JG, Dunwell JM. Genetic analysis of a major international collection of cultivated apple varieties reveals previously unknown historic heteroploid and inbred relationships. PLoS One. 2018;13(9):e0202405. doi: 10.1371/journal.pone.0202405. PubMed DOI PMC
Bianco L, Cestaro A, Linsmith G, Muranty H, Denancé C, Théron A, et al. Development and validation of the axiom®Apple480K SNP genotyping array. Plant J. 2016;86(1):62–74. doi: 10.1111/tpj.13145. PubMed DOI
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575. doi: 10.1086/519795. PubMed DOI PMC
Voorrips RE, Bink MCAM, van de Weg WE. Pedimap: software for the visualization of genetic and phenotypic data in pedigrees. J Hered. 2012;103(6):903–907. doi: 10.1093/jhered/ess060. PubMed DOI PMC
Ronald WG, Temmerman HJ. Tree fruits for the prairie provinces. Agriculture Canada: Ottawa; 1982.
Seminarium EC. et plantarium fructiferarum praesertim arborum quae post hortos conseri solent. . R. stephani (Parisiis) 1540.
Hogg R. The apple and its varieties. London: Groombridge and sons; 1859. p. 336.
Mayer J. In: Winterschmidt AW, editor. Pomona Franconica oder natürliche Abbildung und Beschreibung der besten und vorzüglichsten Europäischen Gattungen der Obstbäume und Früchte welche in dem Hochfürstlichen Hofgarten zu Würzburg gezogen werden. Nuremberg: Winterschmidt; 1779. Available from: https://books.google.fr/books?id=S4BitAEACAAJ.
Volk GM, Henk AD. Historic American apple cultivars: identification and availability. J Am Soc Hortic Sci. 2016;141(3):292–301. doi: 10.21273/JASHS.141.3.292. DOI
Gross BL, Wedger MJ, Martinez M, Volk GM, Hale C. Identification of unknown apple (Malus × domestica) cultivars demonstrates impact local breeding program on cultivar diversity. Genet Resour Crop Evol. 2018;65(5):1317–1327. doi: 10.1007/s10722-018-0625-6. DOI
Darlington CD, Moffett AA. Primary and secondary chromosome balance in Pyrus. J Genet. 1930;22(2):129–151. doi: 10.1007/BF02983843. DOI
Gardiner SE, Bassett HCM, Madie C, Noiton D. a. M. Isozyme, randomly amplified polymorphic DNA (RAPD), and restriction fragment-length polymorphism (RFLP) markers used to deduce a putative parent for the `Braeburn’ apple. J Am Soc Hortic Sci. 1996;121(6):996–1001. doi: 10.21273/JASHS.121.6.996. DOI
Trainin T, Zohar M, Shimoni-Shor E, Doron-Faigenboim A, Bar-Ya’akov I, Hatib K, et al. A unique haplotype found in apple accessions exhibiting early bud-break could serve as a marker for breeding apples with low chilling requirements. Mol Breed. 2016;36(11):158. doi: 10.1007/s11032-016-0575-7. DOI
Hill WG, White IMS. Identification of Pedigree Relationship from Genome Sharing. G3 Genes Genomes Genet. 2013;3(9):1553–1571. PubMed PMC
Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, et al. Genome-wide association mapping of flowering and ripening periods in apple. Front Plant Sci. 2017;8:1923. doi: 10.3389/fpls.2017.01923. PubMed DOI PMC
Fernandez-Fernandez F. Fingerprinting the National Apple & Pear Collections [internet] 2010.
Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet. 2017;49(7):1099–1106. doi: 10.1038/ng.3886. PubMed DOI
Clayton D. snpStats: SnpMatrix and XSnpMatrix classes and methods. 2014.
Butts C. network: a Package for Managing Relational Data in R. J Stat Softw. 2008;24:2.
Millard SP. EnvStats: an R package for environmental statistics. New York: Springer; 2013.