SSR-Based Analysis of Genetic Diversity and Structure of Sweet Cherry (Prunus avium L.) from 19 Countries in Europe
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34685793
PubMed Central
PMC8540667
DOI
10.3390/plants10101983
PII: plants10101983
Knihovny.cz E-zdroje
- Klíčová slova
- Prunus avium, SSR, breeding, genetic diversity, genetic resources, population structure,
- Publikační typ
- časopisecké články MeSH
Sweet cherry (Prunus avium L.) is a temperate fruit species whose production might be highly impacted by climate change in the near future. Diversity of plant material could be an option to mitigate these climate risks by enabling producers to have new cultivars well adapted to new environmental conditions. In this study, subsets of sweet cherry collections of 19 European countries were genotyped using 14 SSR. The objectives of this study were (i) to assess genetic diversity parameters, (ii) to estimate the levels of population structure, and (iii) to identify germplasm redundancies. A total of 314 accessions, including landraces, early selections, and modern cultivars, were monitored, and 220 unique SSR genotypes were identified. All 14 loci were confirmed to be polymorphic, and a total of 137 alleles were detected with a mean of 9.8 alleles per locus. The average number of alleles (N = 9.8), PIC value (0.658), observed heterozygosity (Ho = 0.71), and expected heterozygosity (He = 0.70) were higher in this study compared to values reported so far. Four ancestral populations were detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA), and two of them (K1 and K4) could be attributed to the geographical origin of the accessions. A N-J tree grouped the 220 sweet cherry accessions within three main clusters and six subgroups. Accessions belonging to the four STRUCTURE populations roughly clustered together. Clustering confirmed known genealogical data for several accessions. The large genetic diversity of the collection was demonstrated, in particular within the landrace pool, justifying the efforts made over decades for their conservation. New sources of diversity will allow producers to face challenges, such as climate change and the need to develop more sustainable production systems.
CREA Research Centre for Olive Fruit and Citrus Crops via la Canapona 1 bis 47121 Forlì Italy
Genetics Genomics and Breeding Department NIAB EMR New Road East Malling Kent ME19 6BJ UK
INRAE Unité Expérimentale Arboricole Domaine de la Tour de Rance 47320 Bourran France
INRAE University of Bordeaux UMR BFP 33882 Villenave d'Ornon France
Institute of Horticulture Graudu 1 LV 3701 Dobele Latvia
National Agricultural Research and Innovation Centre Gödöllő H 1223 Budapest Hungary
Research and Breeding Institute of Pomology Holovousy Ltd Holovousy 129 508 01 Hořice Czech Republic
Research Station for Fruit Growing 175 Voinesti RO707305 Iasi Romania
Zobrazit více v PubMed
Mbow C., Rosenzweig C., Barioni L.G., Benton T.G., Herrero M., Krishnapillai M., Liwenga E., Pradhan P., Rivera-Ferre M.G., Sapkota T., et al. Food security. In: Shukla P.R., Skea J., Calvo Buendia E., Masson-Delmotte V., Pörtner H.O., Roberts D.C., Zhai P., Slade R., Connors S., van Diemen R., et al., editors. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. IPCC; Geneva, Switzerland: 2019. [(accessed on 9 September 2021)]. in press. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/08_Chapter-5.pdf.
Gepts P. Plant Genetic Resources Conservation and Utilization: The Accomplishments and Future of a Societal Insurance Policy. Crop Sci. 2006;46:2278–2292. doi: 10.2135/cropsci2006.03.0169gas. DOI
Weise S., Oppermann M., Maggioni L., van Hintum T., Knüpffer H. EURISCO: The European search catalogue for plant genetic resources. Nucleic Acids Res. 2017;45:D1003–D1008. doi: 10.1093/nar/gkw755. PubMed DOI PMC
Di Matteo A., Russo R., Graziani G., Ritieni A., di Vaio C. Characterization of autochthonous sweet cherry cultivars (Prunus avium L.) of Southern Italy for fruit quality, bioactive compounds and antioxidant activity. J. Sci. Food Agric. 2017;97:2782–2794. doi: 10.1002/jsfa.8106. PubMed DOI
Serradilla M.J., Fotirić Akšić M., Manganaris G.A., Ercisli S., González-Gómez D., Valero D. Fruit Chemistry, Nutritional Benefits and Social Aspects of Cherries. In: Quero-García J., Iezzoni A., Puławska J., Lang G., editors. Cherries: Botany, Production and Uses. 1st ed. CABI; Oxfordshire, UK: Boston, MA, USA: 2017. pp. 420–442.
Antognoni F., Potente G., Mandrioli R., Angeloni C., Freschi M., Malaguti M., Hrelia S., Lugli S., Gennari F., Muzzi E., et al. Fruit Quality Characterization of New Sweet Cherry Cultivars as a Good Source of Bioactive Phenolic Compounds with Antioxidant and Neuroprotective Potential. Antioxidants. 2020;9:677. doi: 10.3390/antiox9080677. PubMed DOI PMC
Iezzoni A., Wünsch A., Höfer M., Giovannini D., Jensen M., Quero-García J., Campoy J.A., Vokurka A., Barreneche T. Biodiversity, germplasm resources and breeding methods. In: Quero-García J., Iezzoni A., Puławska J., Lang G., editors. Cherries: Botany, Production and Uses. 1st ed. CABI; Oxfordshire, UK: Boston, MA, USA: 2017. pp. 36–59.
Leterme E. Les Fruits Retrouvés. Editions du Rouergue; Rodez, France: 1995. p. 287.
Ordidge M., Litthauer S., Venison E., Blouin-Delmas M., Fernandez-Fernandez F., Höfer M., Kägi C., Kellerhals M., Marchese A., Mariette S., et al. Towards a Joint International Database: Alignment of SSR Marker Data for European Collections of Cherry Germplasm. Plants. 2021;10:1243. doi: 10.3390/plants10061243. PubMed DOI PMC
Nybom H., Lācis G. Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. Plants. 2021;10:415. doi: 10.3390/plants10020415. PubMed DOI PMC
Schüller E., Fernández F.F., Antanaviciute L., Anhalt-Brüderl U., Spornberger A., Forneck A. Autochthonous Austrian Varieties of Prunus avium L. Represent a Regional Gene Pool, Assessed Using SSR and AFLP Markers. Genes. 2021;12:322. doi: 10.3390/genes12030322. PubMed DOI PMC
Krmpot T., Radoš L.J., Vokurka A. Genetic Characterization of Autochthonous Sweet Cherry Genotypes (Prunus avium L.) using SSR markers. Genetika. 2020;52:43–53. doi: 10.2298/GENSR2001043K. DOI
Sharma K., Xuan H., Sedl P. Assessment of genetic diversity of Czech sweet cherry cultivars using microsatellite markers. Biochem. Syst. Ecol. 2015;63:6–12. doi: 10.1016/j.bse.2015.09.013. DOI
Mariette S., Tavaud M., Arunyawat U., Capdeville G., Millan M., Salin F. Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet. 2010;11:77. doi: 10.1186/1471-2156-11-77. PubMed DOI PMC
Campoy J.A., Lerigoleur-Balsemin E., Christmann H., Beauvieux R., Girollet N., Quero-García J., Dirlewanger E., Barreneche T. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol. 2016;16:49. doi: 10.1186/s12870-016-0712-9. PubMed DOI PMC
Höfer M., Braun-Lüllemann A., Schiffler J., Schuster M., Flachowsky H. Pomological and molecular characterization of sweet cherry cultivars (Prunus avium L.) of the German Fruit Genebank. OpenAgrar Repos. 2021 doi: 10.5073/20210209-092933. DOI
Ganopoulos V.I., Kazantzis K., Chatzicharisis I., Karayiannis I., Tsaftaris A. Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite-based (SSR/ISSR) and morpho-physiological markers. Euphytica. 2011;181:237–251. doi: 10.1007/s10681-011-0416-z. DOI
Guarino C., Santoro S., de Simone L., Cipriani G. Prunus avium: Nuclear DNA study in wild populations and sweet cherry cultivars. Genome. 2009;52:320–337. doi: 10.1139/G09-007. PubMed DOI
Di Vaio C., Villano C., Marallo N. Molecular analysis of native cultivars of sweet cherry in Southern Italy. Hortic. Sci. 2015;42:114–118. doi: 10.17221/352/2014-HORTSCI. DOI
Marchese A., Giovannini D., Leone A., Mafrica R., Palasciano M., Cantini C., di Viano C., de Salvador F.R., Giacalone G., Carusol T., et al. S-genotype identification, genetic diversity and structure analysis of Italian sweet cherry germplasm. Tree Genet. Genomes. 2017;13:93. doi: 10.1007/s11295-017-1176-2. DOI
Muccillo L., Colantuoni V., Sciarrillo R., Baiamonte G., Salerno G., Marziano M., Sabatino L., Guarino C. Molecular and environmental analysis of Campania (Italy) sweet cherry (Prunus avium L.) cultivars for biocultural refugia identification and conservation. Sci. Rep. 2019;9:6796. doi: 10.1038/s41598-019-43226-2. PubMed DOI PMC
Stanys V., Baniulis D., Morkunaite-Haimi S., Siksnianiene J.B., Frercks B., Gelvonauskiene D., Stepulaitiene I., Staniene G., Siksnianas T. Characterising the genetic diversity of Lithuanian sweet cherry (Prunus avium L.) cultivars using SSR markers. Sci. Hortic. 2012;142:136–142. doi: 10.1016/j.scienta.2012.05.011. DOI
Wünsch A., Hormaza J.I. Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach (Prunus persica (L.) Batsch) SSR sequences. Heredity. 2002;89:56–63. doi: 10.1038/sj.hdy.6800101. PubMed DOI
Clarke J.B., Tobutt K.R. Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol. Ecol. Notes. 2003;3:578–580. doi: 10.1046/j.1471-8286.2003.00517.x. DOI
Schueler S., Tusch A., Schuster M., Ziegenhangen B. Characterization of microsatellites in wild and sweet cherry (Prunus avium L.)—Markers for individual identification and reproductive processes. Genome. 2003;46:95–102. doi: 10.1139/g02-107. PubMed DOI
Lacis G., Rashal I., Ruisa S., Trajkovski V., Iezzoni A. Assesment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Sci. Hortic. 2009;121:451–457. doi: 10.1016/j.scienta.2009.03.016. DOI
Vaughan S.P., Russell K. Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol. Ecol. Notes. 2004;4:429–431. doi: 10.1111/j.1471-8286.2004.00673.x. DOI
Patzak J., Henychová A., Paprštein F., Sedlák J. Evaluation of Genetic Variability Within Sweet Cherry (Prunus avium L.) Genetic Resources by Molecular SSR Markers. Acta Sci. Pol. Hortorum Cultus. 2019;18:157–165. doi: 10.24326/asphc.2019.3.15. DOI
Pinosio S., Marroni F., Zuccolo A., Vitulo N., Mariette S., Sonnante G., Aravanopoulos F.A., Ganopoulos I., Palasciano M., Vidotto M., et al. A draft genome of sweet cherry (Prunus avium L.) reveals genome-wide and local effects of domestication. Plant J. 2020;103:1420–1432. doi: 10.1111/tpj.14809. PubMed DOI
Quero-García J., Schuster M., López-Ortega G., Charlot G. Sweet cherry varieties and improvement. In: Quero-García J., Iezzoni A., Puławska J., Lang G., editors. Cherries: Botany, Production and Uses. 1st ed. CABI; Oxfordshire, UK: Boston, MA, USA: 2017. pp. 60–94.
Urrestarazu J., Denancé C., Ravon E., Guyader A., Guisnel R., Feugey L., Poncet C.H., Lateur M., Houben P., Ordidge M., et al. Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol. 2016;16:130. doi: 10.1186/s12870-016-0818-0. PubMed DOI PMC
Choi C., Kappel F. Inbreeding, Coancestry, and Founding Clones of Sweet Cherries from North America. J. Am. Soc. Hortic. Sci. 2004;129:535–544. doi: 10.21273/JASHS.129.4.0535. DOI
Herrero M., Santiago J., Wünch A. Flowering, fruit set and development. In: Quero-García J., Iezzoni A., Puławska J., Lang G., editors. Cherries: Botany, Production and Uses. 1st ed. CABI; Oxfordshire, UK: Boston, MA, USA: 2017. pp. 14–36.
Zhang G., Sebolt A.M., Sooriyapathirana S.S., Wang D., Bink M.C., Olmstead J.W., Iezzoni A.F. Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet. Genomes. 2010;6:25–36. doi: 10.1007/s11295-009-0225-x. DOI
Edge-Garza D.A., Rowland T.V., Haendiges S., Peace C. A high-throughput and cost-efficient DNA extraction protocol for the tree fruit crops of apple, sweet cherry, and peach relying on silica beads during tissue sampling. Mol. Breed. 2014;34:2225–2228. doi: 10.1007/s11032-014-0160-x. DOI
Clarke J.B., Tobutt K.R. A standard set of accessions, microsatellites and genotypes for harmonising the fingerprinting of cherry collections for the ECPGR. Acta Hortic. 2009;814:615–618. doi: 10.17660/ActaHortic.2009.814.104. DOI
Vilanova S., Romero C., Abbott A.G., Llacer G., Badenes M.L. An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor. Appl. Genet. 2003;107:239–247. doi: 10.1007/s00122-003-1243-y. PubMed DOI
Rosyara U.R., Bink M.C.A.M., van de Weg E., Zhang G., Wang D., Sebolt A., Dirlewanger E., Quero-Garcia J., Schuster M., Iezzoni A.F. Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol. Breed. 2013;32:875–887. doi: 10.1007/s11032-013-9916-y. DOI
Sandefur P., Oraguzie N., Peace C. A DNA test for routine prediction in breeding of sweet cherry fruit color, Pav-Rf-SSR. Mol. Breed. 2016;36:33. doi: 10.1007/s11032-016-0458-y. DOI
Dirlewanger E., Cosson P., Tavaud M., Aranzana M.J., Poizat C., Zanetto A., Arus P., Laigret F. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.) Theor. Appl. Genet. 2002;105:127–138. doi: 10.1007/s00122-002-0867-7. PubMed DOI
Aranzana M.J., Pineda A., Cosson P., Dirlewanger E., Ascasibar J., Cipriani G., Dunson-Ryder C.D., Testolin R., Abbott A.G., King G.J., et al. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor. Appl. Genet. 2003;106:819–825. doi: 10.1007/s00122-002-1094-y. PubMed DOI
Olmstead J.W., Sebolt A.M., Cabrera A., Sooriyapathirana S.S., Hammar S., Iriarte G., Wang D., Chen C.Y., van der Knaap E., Iezzoni A.F. Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet. Genomes. 2008;4:897–910. doi: 10.1007/s11295-008-0161-1. DOI
Menjja M., Garcia-Mas J., Howad W., Badenes M.L., Arùs P. Prunus microsatellite marker transferability across rosaceous crops. Tree Genet. Genomes. 2004;6:689–700. doi: 10.1007/s11295-010-0284-z. DOI
Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC
Denancé C., Muranty H., Durel C.-E. MUNQ—Malus UNiQue genotype code for grouping apple accessions corresponding to a unique genotypic profile. Portail Data INRAE. 2020 doi: 10.15454/HKGMAS. DOI
Muranty H., Denancé C., Feugey L., Crépin J.-L., Barbier Y., Tartarini S., Ordidge M., Troggio M., Lateur M., Nybom H., et al. Using whole-genome SNP data to reconstruct a large multi-generation pedigree in apple germplasm. BMC Plant Biol. 2020;20:2. doi: 10.1186/s12870-019-2171-6. PubMed DOI PMC
Kalinowski S.T., Taper M.L., Marshall T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007;16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x. PubMed DOI
Perrier X., Flori A., Bonnot F. Data analysis methods. In: Hamon P., Seguin M., Perrier X., Glaszmann J.C., editors. Genetic Diversity of Cultivated Tropical Plants. 1st ed. Enfield Science Publishers; Montpellier, France: 2003. pp. 43–76.
Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC
Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Perrier X., Jacquemoud-Collet J.P. DARwin Software. 2006. [(accessed on 9 September 2021)]. Available online: http://darwin.cirad.fr/