SSR-Based Analysis of Genetic Diversity and Structure of Sweet Cherry (Prunus avium L.) from 19 Countries in Europe

. 2021 Sep 23 ; 10 (10) : . [epub] 20210923

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34685793

Sweet cherry (Prunus avium L.) is a temperate fruit species whose production might be highly impacted by climate change in the near future. Diversity of plant material could be an option to mitigate these climate risks by enabling producers to have new cultivars well adapted to new environmental conditions. In this study, subsets of sweet cherry collections of 19 European countries were genotyped using 14 SSR. The objectives of this study were (i) to assess genetic diversity parameters, (ii) to estimate the levels of population structure, and (iii) to identify germplasm redundancies. A total of 314 accessions, including landraces, early selections, and modern cultivars, were monitored, and 220 unique SSR genotypes were identified. All 14 loci were confirmed to be polymorphic, and a total of 137 alleles were detected with a mean of 9.8 alleles per locus. The average number of alleles (N = 9.8), PIC value (0.658), observed heterozygosity (Ho = 0.71), and expected heterozygosity (He = 0.70) were higher in this study compared to values reported so far. Four ancestral populations were detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA), and two of them (K1 and K4) could be attributed to the geographical origin of the accessions. A N-J tree grouped the 220 sweet cherry accessions within three main clusters and six subgroups. Accessions belonging to the four STRUCTURE populations roughly clustered together. Clustering confirmed known genealogical data for several accessions. The large genetic diversity of the collection was demonstrated, in particular within the landrace pool, justifying the efforts made over decades for their conservation. New sources of diversity will allow producers to face challenges, such as climate change and the need to develop more sustainable production systems.

Balsgård Department of Plant Breeding Swedish University of Agricultural Sciences Fjälkestadsvägen 459 29194 Kristianstad Sweden

CRA W Centre Wallon de Recherches Agronomiques Plant Breeding and Biodiversity Bâtiment Emile Marchal Rue de Liroux 4 5030 Gembloux Belgium

CREA Research Centre for Olive Fruit and Citrus Crops via la Canapona 1 bis 47121 Forlì Italy

Département Arboriculture Arboriculture Fruitière Viticulture Ecole Nationale d'Agriculture de Meknès B P S 40 Meknès 50000 Morocco

Department for Plant Breeding Genetics and Biometrics Faculty of Agriculture University of Zagreb Svetošimunska 25 HR 10000 Zagreb Croatia

Department of Crop Science School of Agriculture Policy and Development University of Reading Reading RG6 6EU UK

Division of Viticulture and Pomology University of Natural Resources and Life Sciences Vienna Gregor Mendel Strasse 33 1180 Vienna Austria

Faculty of Engineering and Science Natural Resources Institute University of Greenwich Chatham Kent ME4 4TB UK

Federal Research Centre for Cultivated Plants Institute for Breeding Research on Fruit Crops Julius Kühn Institute Pillnitzer Platz 3a 01326 Dresden Germany

Genetics Genomics and Breeding Department NIAB EMR New Road East Malling Kent ME19 6BJ UK

Hellenic Agricultural Organization 'DEMETER' Department of Deciduous Fruit Trees Institute of Plant Breeding and Genetic Resources 38 RR Station 59200 Naoussa Greece

INRAE Unité Expérimentale Arboricole Domaine de la Tour de Rance 47320 Bourran France

INRAE University of Bordeaux UMR BFP 33882 Villenave d'Ornon France

Institute for Genetic Resources University of Banja Luka Bulevar vojvode Petra Bojovica 1A 78000 Banja Luka Bosnia and Herzegovina

Institute of Horticulture Graudu 1 LV 3701 Dobele Latvia

Mediterranean Institute for Agriculture Environment and Development and Departamento de Fitotecnia Escola de Ciências e Tecnologia Universidade de Évora Pólo da Mitra Ap 94 7006 554 Évora Portugal

National Agricultural Research and Innovation Centre Gödöllő H 1223 Budapest Hungary

NIBIO Ullensvang The Norwegian Institute of Bioeconomy Research Ullensvangvegen 1005 N 5781 Lofthus Norway

NPPC Výskumný ústav Rastlinnej Výroby VÚRV Research Institute of Plant Production RIPP Bratislavská 122 921 68 Piešťany Slovakia

Polli Horticultural Research Centre Institute of Agricultural and Environmental Sciences Uus 2 69108 Polli Estonia

Research and Breeding Institute of Pomology Holovousy Ltd Holovousy 129 508 01 Hořice Czech Republic

Research Station for Fruit Growing 175 Voinesti RO707305 Iasi Romania

Zobrazit více v PubMed

Mbow C., Rosenzweig C., Barioni L.G., Benton T.G., Herrero M., Krishnapillai M., Liwenga E., Pradhan P., Rivera-Ferre M.G., Sapkota T., et al. Food security. In: Shukla P.R., Skea J., Calvo Buendia E., Masson-Delmotte V., Pörtner H.O., Roberts D.C., Zhai P., Slade R., Connors S., van Diemen R., et al., editors. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. IPCC; Geneva, Switzerland: 2019. [(accessed on 9 September 2021)]. in press. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/08_Chapter-5.pdf.

Gepts P. Plant Genetic Resources Conservation and Utilization: The Accomplishments and Future of a Societal Insurance Policy. Crop Sci. 2006;46:2278–2292. doi: 10.2135/cropsci2006.03.0169gas. DOI

Weise S., Oppermann M., Maggioni L., van Hintum T., Knüpffer H. EURISCO: The European search catalogue for plant genetic resources. Nucleic Acids Res. 2017;45:D1003–D1008. doi: 10.1093/nar/gkw755. PubMed DOI PMC

Di Matteo A., Russo R., Graziani G., Ritieni A., di Vaio C. Characterization of autochthonous sweet cherry cultivars (Prunus avium L.) of Southern Italy for fruit quality, bioactive compounds and antioxidant activity. J. Sci. Food Agric. 2017;97:2782–2794. doi: 10.1002/jsfa.8106. PubMed DOI

Serradilla M.J., Fotirić Akšić M., Manganaris G.A., Ercisli S., González-Gómez D., Valero D. Fruit Chemistry, Nutritional Benefits and Social Aspects of Cherries. In: Quero-García J., Iezzoni A., Puławska J., Lang G., editors. Cherries: Botany, Production and Uses. 1st ed. CABI; Oxfordshire, UK: Boston, MA, USA: 2017. pp. 420–442.

Antognoni F., Potente G., Mandrioli R., Angeloni C., Freschi M., Malaguti M., Hrelia S., Lugli S., Gennari F., Muzzi E., et al. Fruit Quality Characterization of New Sweet Cherry Cultivars as a Good Source of Bioactive Phenolic Compounds with Antioxidant and Neuroprotective Potential. Antioxidants. 2020;9:677. doi: 10.3390/antiox9080677. PubMed DOI PMC

Iezzoni A., Wünsch A., Höfer M., Giovannini D., Jensen M., Quero-García J., Campoy J.A., Vokurka A., Barreneche T. Biodiversity, germplasm resources and breeding methods. In: Quero-García J., Iezzoni A., Puławska J., Lang G., editors. Cherries: Botany, Production and Uses. 1st ed. CABI; Oxfordshire, UK: Boston, MA, USA: 2017. pp. 36–59.

Leterme E. Les Fruits Retrouvés. Editions du Rouergue; Rodez, France: 1995. p. 287.

Ordidge M., Litthauer S., Venison E., Blouin-Delmas M., Fernandez-Fernandez F., Höfer M., Kägi C., Kellerhals M., Marchese A., Mariette S., et al. Towards a Joint International Database: Alignment of SSR Marker Data for European Collections of Cherry Germplasm. Plants. 2021;10:1243. doi: 10.3390/plants10061243. PubMed DOI PMC

Nybom H., Lācis G. Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. Plants. 2021;10:415. doi: 10.3390/plants10020415. PubMed DOI PMC

Schüller E., Fernández F.F., Antanaviciute L., Anhalt-Brüderl U., Spornberger A., Forneck A. Autochthonous Austrian Varieties of Prunus avium L. Represent a Regional Gene Pool, Assessed Using SSR and AFLP Markers. Genes. 2021;12:322. doi: 10.3390/genes12030322. PubMed DOI PMC

Krmpot T., Radoš L.J., Vokurka A. Genetic Characterization of Autochthonous Sweet Cherry Genotypes (Prunus avium L.) using SSR markers. Genetika. 2020;52:43–53. doi: 10.2298/GENSR2001043K. DOI

Sharma K., Xuan H., Sedl P. Assessment of genetic diversity of Czech sweet cherry cultivars using microsatellite markers. Biochem. Syst. Ecol. 2015;63:6–12. doi: 10.1016/j.bse.2015.09.013. DOI

Mariette S., Tavaud M., Arunyawat U., Capdeville G., Millan M., Salin F. Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet. 2010;11:77. doi: 10.1186/1471-2156-11-77. PubMed DOI PMC

Campoy J.A., Lerigoleur-Balsemin E., Christmann H., Beauvieux R., Girollet N., Quero-García J., Dirlewanger E., Barreneche T. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol. 2016;16:49. doi: 10.1186/s12870-016-0712-9. PubMed DOI PMC

Höfer M., Braun-Lüllemann A., Schiffler J., Schuster M., Flachowsky H. Pomological and molecular characterization of sweet cherry cultivars (Prunus avium L.) of the German Fruit Genebank. OpenAgrar Repos. 2021 doi: 10.5073/20210209-092933. DOI

Ganopoulos V.I., Kazantzis K., Chatzicharisis I., Karayiannis I., Tsaftaris A. Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite-based (SSR/ISSR) and morpho-physiological markers. Euphytica. 2011;181:237–251. doi: 10.1007/s10681-011-0416-z. DOI

Guarino C., Santoro S., de Simone L., Cipriani G. Prunus avium: Nuclear DNA study in wild populations and sweet cherry cultivars. Genome. 2009;52:320–337. doi: 10.1139/G09-007. PubMed DOI

Di Vaio C., Villano C., Marallo N. Molecular analysis of native cultivars of sweet cherry in Southern Italy. Hortic. Sci. 2015;42:114–118. doi: 10.17221/352/2014-HORTSCI. DOI

Marchese A., Giovannini D., Leone A., Mafrica R., Palasciano M., Cantini C., di Viano C., de Salvador F.R., Giacalone G., Carusol T., et al. S-genotype identification, genetic diversity and structure analysis of Italian sweet cherry germplasm. Tree Genet. Genomes. 2017;13:93. doi: 10.1007/s11295-017-1176-2. DOI

Muccillo L., Colantuoni V., Sciarrillo R., Baiamonte G., Salerno G., Marziano M., Sabatino L., Guarino C. Molecular and environmental analysis of Campania (Italy) sweet cherry (Prunus avium L.) cultivars for biocultural refugia identification and conservation. Sci. Rep. 2019;9:6796. doi: 10.1038/s41598-019-43226-2. PubMed DOI PMC

Stanys V., Baniulis D., Morkunaite-Haimi S., Siksnianiene J.B., Frercks B., Gelvonauskiene D., Stepulaitiene I., Staniene G., Siksnianas T. Characterising the genetic diversity of Lithuanian sweet cherry (Prunus avium L.) cultivars using SSR markers. Sci. Hortic. 2012;142:136–142. doi: 10.1016/j.scienta.2012.05.011. DOI

Wünsch A., Hormaza J.I. Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach (Prunus persica (L.) Batsch) SSR sequences. Heredity. 2002;89:56–63. doi: 10.1038/sj.hdy.6800101. PubMed DOI

Clarke J.B., Tobutt K.R. Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol. Ecol. Notes. 2003;3:578–580. doi: 10.1046/j.1471-8286.2003.00517.x. DOI

Schueler S., Tusch A., Schuster M., Ziegenhangen B. Characterization of microsatellites in wild and sweet cherry (Prunus avium L.)—Markers for individual identification and reproductive processes. Genome. 2003;46:95–102. doi: 10.1139/g02-107. PubMed DOI

Lacis G., Rashal I., Ruisa S., Trajkovski V., Iezzoni A. Assesment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Sci. Hortic. 2009;121:451–457. doi: 10.1016/j.scienta.2009.03.016. DOI

Vaughan S.P., Russell K. Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol. Ecol. Notes. 2004;4:429–431. doi: 10.1111/j.1471-8286.2004.00673.x. DOI

Patzak J., Henychová A., Paprštein F., Sedlák J. Evaluation of Genetic Variability Within Sweet Cherry (Prunus avium L.) Genetic Resources by Molecular SSR Markers. Acta Sci. Pol. Hortorum Cultus. 2019;18:157–165. doi: 10.24326/asphc.2019.3.15. DOI

Pinosio S., Marroni F., Zuccolo A., Vitulo N., Mariette S., Sonnante G., Aravanopoulos F.A., Ganopoulos I., Palasciano M., Vidotto M., et al. A draft genome of sweet cherry (Prunus avium L.) reveals genome-wide and local effects of domestication. Plant J. 2020;103:1420–1432. doi: 10.1111/tpj.14809. PubMed DOI

Quero-García J., Schuster M., López-Ortega G., Charlot G. Sweet cherry varieties and improvement. In: Quero-García J., Iezzoni A., Puławska J., Lang G., editors. Cherries: Botany, Production and Uses. 1st ed. CABI; Oxfordshire, UK: Boston, MA, USA: 2017. pp. 60–94.

Urrestarazu J., Denancé C., Ravon E., Guyader A., Guisnel R., Feugey L., Poncet C.H., Lateur M., Houben P., Ordidge M., et al. Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol. 2016;16:130. doi: 10.1186/s12870-016-0818-0. PubMed DOI PMC

Choi C., Kappel F. Inbreeding, Coancestry, and Founding Clones of Sweet Cherries from North America. J. Am. Soc. Hortic. Sci. 2004;129:535–544. doi: 10.21273/JASHS.129.4.0535. DOI

Herrero M., Santiago J., Wünch A. Flowering, fruit set and development. In: Quero-García J., Iezzoni A., Puławska J., Lang G., editors. Cherries: Botany, Production and Uses. 1st ed. CABI; Oxfordshire, UK: Boston, MA, USA: 2017. pp. 14–36.

Zhang G., Sebolt A.M., Sooriyapathirana S.S., Wang D., Bink M.C., Olmstead J.W., Iezzoni A.F. Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet. Genomes. 2010;6:25–36. doi: 10.1007/s11295-009-0225-x. DOI

Edge-Garza D.A., Rowland T.V., Haendiges S., Peace C. A high-throughput and cost-efficient DNA extraction protocol for the tree fruit crops of apple, sweet cherry, and peach relying on silica beads during tissue sampling. Mol. Breed. 2014;34:2225–2228. doi: 10.1007/s11032-014-0160-x. DOI

Clarke J.B., Tobutt K.R. A standard set of accessions, microsatellites and genotypes for harmonising the fingerprinting of cherry collections for the ECPGR. Acta Hortic. 2009;814:615–618. doi: 10.17660/ActaHortic.2009.814.104. DOI

Vilanova S., Romero C., Abbott A.G., Llacer G., Badenes M.L. An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor. Appl. Genet. 2003;107:239–247. doi: 10.1007/s00122-003-1243-y. PubMed DOI

Rosyara U.R., Bink M.C.A.M., van de Weg E., Zhang G., Wang D., Sebolt A., Dirlewanger E., Quero-Garcia J., Schuster M., Iezzoni A.F. Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol. Breed. 2013;32:875–887. doi: 10.1007/s11032-013-9916-y. DOI

Sandefur P., Oraguzie N., Peace C. A DNA test for routine prediction in breeding of sweet cherry fruit color, Pav-Rf-SSR. Mol. Breed. 2016;36:33. doi: 10.1007/s11032-016-0458-y. DOI

Dirlewanger E., Cosson P., Tavaud M., Aranzana M.J., Poizat C., Zanetto A., Arus P., Laigret F. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.) Theor. Appl. Genet. 2002;105:127–138. doi: 10.1007/s00122-002-0867-7. PubMed DOI

Aranzana M.J., Pineda A., Cosson P., Dirlewanger E., Ascasibar J., Cipriani G., Dunson-Ryder C.D., Testolin R., Abbott A.G., King G.J., et al. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor. Appl. Genet. 2003;106:819–825. doi: 10.1007/s00122-002-1094-y. PubMed DOI

Olmstead J.W., Sebolt A.M., Cabrera A., Sooriyapathirana S.S., Hammar S., Iriarte G., Wang D., Chen C.Y., van der Knaap E., Iezzoni A.F. Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet. Genomes. 2008;4:897–910. doi: 10.1007/s11295-008-0161-1. DOI

Menjja M., Garcia-Mas J., Howad W., Badenes M.L., Arùs P. Prunus microsatellite marker transferability across rosaceous crops. Tree Genet. Genomes. 2004;6:689–700. doi: 10.1007/s11295-010-0284-z. DOI

Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC

Denancé C., Muranty H., Durel C.-E. MUNQ—Malus UNiQue genotype code for grouping apple accessions corresponding to a unique genotypic profile. Portail Data INRAE. 2020 doi: 10.15454/HKGMAS. DOI

Muranty H., Denancé C., Feugey L., Crépin J.-L., Barbier Y., Tartarini S., Ordidge M., Troggio M., Lateur M., Nybom H., et al. Using whole-genome SNP data to reconstruct a large multi-generation pedigree in apple germplasm. BMC Plant Biol. 2020;20:2. doi: 10.1186/s12870-019-2171-6. PubMed DOI PMC

Kalinowski S.T., Taper M.L., Marshall T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007;16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x. PubMed DOI

Perrier X., Flori A., Bonnot F. Data analysis methods. In: Hamon P., Seguin M., Perrier X., Glaszmann J.C., editors. Genetic Diversity of Cultivated Tropical Plants. 1st ed. Enfield Science Publishers; Montpellier, France: 2003. pp. 43–76.

Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI

Perrier X., Jacquemoud-Collet J.P. DARwin Software. 2006. [(accessed on 9 September 2021)]. Available online: http://darwin.cirad.fr/

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace