Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation

. 2021 Sep 21 ; 14 (18) : . [epub] 20210921

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576686

Grantová podpora
Specific research project 2107/2021 Univerzita Hradec Králové

Polydioxanone (PPDX), as an FDA approved polymer in tissue engineering, is an important component of some promising medical devices, e.g., biodegradable stents. The hydrolytic degradation of polydioxanone stents plays a key role in the safety and efficacy of treatment. A new fast and convenient method to quantitatively evaluate the hydrolytic degradation of PPDX stent material was developed. PPDX esophageal stents were degraded in phosphate-buffered saline for 24 weeks. For the first time, the changes in Raman spectra during PPDX biodegradation have been investigated here. The level of PPDX hydrolytic degradation was determined from the Raman spectra by calculating the area under the 1732 cm-1 peak shoulder. Raman spectroscopy, unlike Fourier transform infrared (FT-IR) spectroscopy, is also sensitive enough to monitor the decrease in the dye content in the stents during the degradation. Observation by a scanning electron microscope showed gradually growing cracks, eventually leading to the stent disintegration. The material crystallinity was increasing during the first 16 weeks, suggesting preferential degradation of the amorphous phase. Our results show a new easy and reliable way to evaluate the progression of PPDX hydrolytic degradation. The proposed approach can be useful for further studies on the behavior of PPDX materials, and for clinical practice.

Zobrazit více v PubMed

Škrlová K., Malachová K., Muñoz-Bonilla A., Měřinská D., Rybková Z., Fernández-García M., Plachá D. Biocompatible polymer materials with antimicrobial properties for preparation of stents. Nanomaterials. 2019;9:1548. doi: 10.3390/nano9111548. PubMed DOI PMC

Alexy R.D., Levi D.S. Materials and manufacturing technologies available for production of a pediatric bioabsorbable stent. Biomed Res. Int. 2013;2013:137985. doi: 10.1155/2013/137985. PubMed DOI PMC

Pillai S.K.C., Sharma C.P. Review paper: Absorbable polymeric surgical sutures: Chemistry, production, properties, biodegradability, and performance. J. Biomater. Appl. 2010;25:291–366. doi: 10.1177/0885328210384890. PubMed DOI

Cachia V.V. Bone Fixation Device. US5893850A. 1999 April 13;

Gertzman A., Thompson D.R. Annealed Polydioxanone Surgical Device and Method for Producing the Same. US4591630A. 1986 May 27;

Zhang T., Zhou S., Gao X., Yang Z., Sun L., Zhang D. A multi-scale method for modeling degradation of bioresorbable polyesters. Acta Biomater. 2017;50:462–475. doi: 10.1016/j.actbio.2016.12.046. PubMed DOI

Goonoo N., Jeetah R., Bhaw-Luximon A., Jhurry D. Polydioxanone-based materials for tissue engineering and cell/drug delivery applications. Eur. J. Pharm. Biopharm. 2015;97:371–391. doi: 10.1016/j.ejpb.2015.05.024. PubMed DOI

Saska S., Pilatti L., Silva E.S.d.S., Nagasawa M.A., Câmara D., Lizier N., Finger E., Konwińska M.D., Kempisty B., Tunchel S., et al. Polydioxanone-based membranes for bone regeneration. Polymers. 2021;13:1685. doi: 10.3390/polym13111685. PubMed DOI PMC

McManus M.C., Sell S.A., Bowen W.C., Koo H.P., Simpson D.G., Bowlin G.L. Electrospun fibrinogen-polydioxanone composite matrix: Potential for in situ urologic tissue engineering. J. Eng. Fiber. Fabr. 2008;3:12–21. doi: 10.1177/155892500800300204. DOI

Adhikari K.R., Stanishevskaya I., Caracciolo P.C., Abraham G.A., Thomas V. Novel poly(ester urethane urea)/polydioxanone blends: Electrospun fibrous meshes and films. Molecules. 2021;26:3847. doi: 10.3390/molecules26133847. PubMed DOI PMC

Przybysz-Romatowska M., Haponiuk J., Formela K. Reactive extrusion of biodegradable aliphatic polyesters in the presence of free-radical-initiators: A review. Polym. Degrad. Stab. 2020;182:109383. doi: 10.1016/j.polymdegradstab.2020.109383. DOI

Zahir L., Kida T., Ryo T., Nakayama Y., Shiono T., Kawasaki N., Yamano N., Nakayuma A. Synthesis of thermoplastic elastomers with high biodegradability in seawater. Polym. Degrad. Stab. 2021;184:109467. doi: 10.1016/j.polymdegradstab.2020.109467. DOI

Yang K.-K., Wang X.-L., Wang Y.-Z. Poly(p-dioxanone) and its copolymers. J. Macromol. Sci. Part C Polym. Rev. 2007;42:373–398. doi: 10.1081/MC-120006453. DOI

Berg M., Walter D., Vries E., Vleggaar F.P., van Berge Henegouwen M., van Hillegersberg R., Siersema P., Fockens P., Hooft J. Biodegradable stent placement before neoadjuvant chemoradiotherapy as a bridge to surgery in patients with locally advanced esophageal cancer. Gastrointest. Endosc. 2014;80:908–913. doi: 10.1016/j.gie.2014.06.004. PubMed DOI

Del-Pozo-García A.J., Piedracoba-Cadahia C., Sánchez-Gómez F., Marín-Gabriel J.C., Rodríguez-Muñoz S. Complete resolution of dysphagia after sequential polyflexTM stenting in a case of recurrent anastomotic stenosis in an adult with congenital esophageal atresia. Rev. Esp. Enfermedades Dig. 2018;110:826–829. doi: 10.17235/reed.2018.5620/2018. PubMed DOI

Rejchrt S., Kopacova M., Brozik J., Bures J. Biodegradable stents for the treatment of benign stenoses of the small and large intestines. Endoscopy. 2011;43:911–917. doi: 10.1055/s-0030-1256405. PubMed DOI

Griffiths B., James P., Morgan G., Diamantopoulos A., Durward A., Nyman A. Biodegradable stents for the relief of vascular bronchial compression in children with left atrial enlargement. J. Bronchol. Interv. Pulmonol. 2020;27:200–204. doi: 10.1097/LBR.0000000000000654. PubMed DOI

Antón-Pacheco J.L., Luna C., García E., López M., Morante R., Tordable C., Palacios A., de Miguel M., Benavent I., Gómez A. Initial experience with a new biodegradable airway stent in children: Is this the stent we were waiting for? Pediatr. Pulmonol. 2016;51:607–612. doi: 10.1002/ppul.23340. PubMed DOI

Siiki A., Rinta-Kiikka I., Sand J., Laukkarinen J. Endoscopic biodegradable biliary stents in the treatment of benign biliary strictures: First report of clinical use in patients. Dig. Endosc. 2017;29:118–121. doi: 10.1111/den.12709. PubMed DOI

Grolich T., Crha M., Novotný L., Kala Z., Hep A., Nečas A., Hlavsa J., Mitas L., Misik J. Self-expandable biodegradable biliary stents in porcine model. J. Surg. Res. 2015;193:606–612. doi: 10.1016/j.jss.2014.08.006. PubMed DOI

Kwon C.-I., Son J.S., Kim K.S., Moon J.P., Park S., Jeon J., Kim G., Choi S.H., Ko K.H., Jeong S., et al. Mechanical properties and degradation process of biliary self-expandable biodegradable stents. Dig. Endosc. 2020 in press. PubMed

Zhu Y., Yang K., Cheng R., Xiang Y., Yuan T., Cheng Y., Sarmento B., Cui W. The current status of biodegradable stent to treat benign luminal disease. Mater. Today. 2017;20:516–529. doi: 10.1016/j.mattod.2017.05.002. DOI

Bezrouk A., Hosszu T., Hromadko L., Zmrhalova Z.O., Kopecek M., Smutny M., Krulichova I.S., Macak J.M., Kremlacek J. Mechanical properties of a biodegradable self-expandable polydioxanone monofilament stent: In vitro force relaxation and its clinical relevance. PLoS ONE. 2020;15:e0235842. doi: 10.1371/journal.pone.0235842. PubMed DOI PMC

Tian Y., Zhang J., Cheng J., Wu G., Zhang Y., Ni Z., Zhao G. A poly(L-lactic acid) monofilament with high mechanical properties for application in biodegradable biliary stents. J. Appl. Polym. Sci. 2021;138:49656. doi: 10.1002/app.49656. DOI

Han C.-M., Lih E., Choi S.-K., Bedair T.M., Lee Y.-J., Park W., Han D.K., Son J.S., Joung Y.K. Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures. J. Ind. Eng. Chem. 2018;67:396–406. doi: 10.1016/j.jiec.2018.07.014. DOI

Wang C., Zhang P. Design and characterization of PDO biodegradable intravascular stents. Text. Res. J. 2017;87:1968–1976. doi: 10.1177/0040517516660893. DOI

Li G., Li Y., Lan P., Li J., Zhao Z., He X., Zhang J., Hu H. Biodegradable weft-knitted intestinal stents: Fabrication and Physical changes investigation in vitro degradation. J. Biomed. Mater. Res. Part A. 2014;102:982–990. doi: 10.1002/jbm.a.34759. PubMed DOI

Wang P.-J., Ferralis N., Conway C., Grossman J.C., Edelman E.R. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc. Natl. Acad. Sci. USA. 2018;115:2640–2645. doi: 10.1073/pnas.1716420115. PubMed DOI PMC

Vano-Herrera K., Vogt C. Degradation of poly(l-lactic acid) coating on permanent coronary metal stent investigated ex vivo by micro raman spectroscopy. J. Raman Spectrosc. 2017;48:711–719. doi: 10.1002/jrs.5111. DOI

Doddi N., Versfelt C.C., Wasserman D. Synthetic Absorbable Surgical Devices of Poly-Dioxanone. US4052988A. 1977 October 11;

Gestí S., Lotz B., Casas M.T., Alemán C., Puiggali J. Morphology and structure of poly(p-dioxanone) Eur. Polym. J. 2007;43:4662–4674. doi: 10.1016/j.eurpolymj.2007.08.007. DOI

Qu L., Cao J., Huang X.-M. Clinical application of biodegradable polydioxanone. J. Clin. Rehabil. Tissue Eng. Res. 2011;15:527–530. doi: 10.3969/j.issn.1673-8225.2011.03.036. DOI

Sahmel O., Arbeiter D., Siewert S., Schümann K., Schmitz K.-P., Grabow N. Optimization of manufacturing processes for biodegradable polymeric stents regarding improved mechanical properties. Curr. Dir. Biomed. Eng. 2018;4:583–585. doi: 10.1515/cdbme-2018-0140. DOI

Guerra A.J., Cano P., Rabionet M., Puig T., Ciurana J. 3D-printed PCL/PLA composite stents: Towards a new solution to cardiovascular problems. Materials. 2018;11:1679. doi: 10.3390/ma11091679. PubMed DOI PMC

Furuhashi Y., Nakayama A., Monno T., Kawahara Y., Yamane H., Kimura Y., Iwata T. X-ray and electron diffraction study of poly(p-dioxanone) Macromol. Rapid Commun. 2004;25:1943–1947. doi: 10.1002/marc.200400399. DOI

Ooi C.P., Cameron R.E. The hydrolytic degradation of polydioxanone (PDSII) sutures. Part I: Morphological aspects. J. Biomed. Mater. Res. 2002;63:280–290. doi: 10.1002/jbm.10181. PubMed DOI

Jaidann M., Brisson J. Conformation Study of poly(p-dioxanone) fibers by polarized raman spectroscopy, X-ray diffraction, and conformation analysis. J. Polym. Sci. Part B Polym. Phys. 2008;46:406–417. doi: 10.1002/polb.21377. DOI

Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016;107:367–392. doi: 10.1016/j.addr.2016.06.012. PubMed DOI

Chu C.C. Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study. J. Appl. Polym. Sci. 1981;26:1727–1734. doi: 10.1002/app.1981.070260527. DOI

Bower D.I. An Introduction to Polymer Physics. Cambridge University Press; Cambridge, UK: 2002.

Rizzarelli P., Carroccio S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal. Chim. Acta. 2014;808:18–43. doi: 10.1016/j.aca.2013.11.001. PubMed DOI

Hakkarainen M., Adamus G., Höglund A., Kowalczuk M., Albertsson A.-C. ESI-MS reveals the influence of hydrophilicity and architecture on the water-soluble degradation product patterns of biodegradable homo- and copolyesters of 1,5-dioxepan-2-one and epsilon-caprolactone. Macromolecules. 2008;41:3547–3554. doi: 10.1021/ma800365m. DOI

Márquez Y., Franco L., Turon P., Martínez J.C., Puiggalí J. Study of non-isothermal crystallization of polydioxanone and analysis of morphological changes occurring during heating and cooling processes. Polymers. 2016;8:351. doi: 10.3390/polym8100351. PubMed DOI PMC

Sabino M., Feijoo J., Müller A. Crystallisation and morphology of neat and degraded poly( p-dioxanone) Polym. Degrad. Stab. 2001;73:541–547. doi: 10.1016/S0141-3910(01)00126-4. DOI

Sabino M., González S., Márquez L., Feijoo J. Study of the hydrolytic degradation of polydioxanone PPDX. Polym. Degrad. Stab. 2000;69:209–216. doi: 10.1016/S0141-3910(00)00062-8. DOI

Bower D.I., Maddams W.F. The Vibrational Spectroscopy of Polymers. Cambridge University Press; Cambridge, UK: 1989. (Cambridge Solid State Science Series).

ELLA-CS BD Stent. [(accessed on 15 September 2021)]. Available online: https://www.ellacs.cz/en/bd-stent.

Ferreira T., Rasband W. ImageJ User Guide—IJ 1.46r. [(accessed on 15 September 2021)];2012 Available online: https://imagej.nih.gov/ij/docs/guide/user-guide.pdf.

Gil-Castell O., Badia J.D., Bou J., Ribes-Greus A. Performance of polyester-based electrospun scaffolds under in vitro hydrolytic conditions: From short-term to long-term applications. Nanomaterials. 2019;9:786. doi: 10.3390/nano9050786. PubMed DOI PMC

Callister W.D., Rethwisch D.G. Materials Science and Engineering. 9th ed. John Wiley & Sons; Hoboken, NJ, USA: 2015.

Kwon D., Kim J., II, Kim D., Kang H., Lee B., Lee K., Kim M. Biodegradable stent. J. Biomed. Sci. Eng. 2012;5:208–216. doi: 10.4236/jbise.2012.54028. DOI

Shockley M.F., Muliana A.H. Modeling temporal and spatial changes during hydrolytic degradation and erosion in biodegradable polymers. Polym. Degrad. Stab. 2020;180:109298. doi: 10.1016/j.polymdegradstab.2020.109298. DOI

Schrader B. Infrared and Raman Spectroscopy—Methods and Applications. VCH; Weinheim, Germany: 1995.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...