Novel Pt-Ag3PO4/CdS/Chitosan Nanocomposite with Enhanced Photocatalytic and Biological Activities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33238536
PubMed Central
PMC7700689
DOI
10.3390/nano10112320
PII: nano10112320
Knihovny.cz E-zdroje
- Klíčová slova
- Pt-Ag3PO4/CdS/chitosan, antibacterial activity, cytotoxicity, photocatalytic activity, visible light,
- Publikační typ
- časopisecké články MeSH
Decorating photocatalysts with noble metal nanoparticles (e.g., Pt) often increases the catalysts' photocatalytic activity and biomedical properties. Here, a simple and inexpensive method has been developed to prepare a Pt-Ag3PO4/CdS/chitosan composite, which was characterized and used for the visible light-induced photocatalytic and antibacterial studies. This synthesized composite showed superior photocatalytic activity for methylene blue degradation as a hazardous pollutant (the maximum dye degradation was observed in 90 min of treatment) and killing of Gram positive bacterial (Staphylococcus aureus and Bacillus cereus) as well as Gram negative bacteria (Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, and Pseudomonas aeruginosa) under visible light irradiation. The antibacterial activity of CdS, CdS/Ag3PO4, and Pt-Ag3PO4/CdS/chitosan against E. coli, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus cereus showed the zone of inhibition (mm) under visible light and under dark conditions at a concentration of 20 µg mL-1. Furthermore, the cell viability of the CdS/chitosan, Ag3PO4, Ag3PO4/CdS/chitosan, and Pt-Ag3PO4/CdS/chitosan were investigated on the human embryonic kidney 293 cells (HEK-293), Henrietta Lacks (HeLa), human liver cancer cell line (HepG2), and pheochromocytoma (PC12) cell lines. In addition, the results indicated that the photodegradation rate for Pt-Ag3PO4/CdS/chitosan is 3.53 times higher than that of CdS and 1.73 times higher than that of the CdS/Ag3PO4 composite. Moreover, Pt-Ag3PO4/CdS/chitosan with an optimal amount of CdS killed large areas of different bacteria and different cells separately in a shorter time period under visible-light irradiation, which shows significantly higher efficiency than pure CdS and other CdS/Ag3PO4 composites. The superb performances of this composite are attributed to its privileged properties, such as retarded recombination of photoinduced electron/hole pairs and a large specific surface area, making Pt-Ag3PO4/CdS/chitosan a valuable composite that can be deployed for a range of important applications, such as visible light-induced photocatalysis and antibacterial activity.
Department of Chemistry Sharif University of Technology P O Box 11155 3516 Tehran 14155 6451 Iran
Universal Scientific Education and Research Network Tehran 15875 4413 Iran
Zobrazit více v PubMed
Zakerzadeh E., Alizadeh E., Samadi Kafil H., Mohammad Hassanzadeh A., Salehi R., Mahkam M. Novel antibacterial polymeric nanocomposite for smart co-delivery of anticancer drugs. Artif. Cells Nanomed. Biotechnol. 2017;45:1509–1520. doi: 10.1080/21691401.2016.1260576. PubMed DOI
Jiang H., Zhang G., Xu B., Feng X., Bai Q., Yang G., Li H. Thermosensitive antibacterial Ag nanocomposite hydrogels made by a one-step green synthesis strategy. New J. Chem. 2016;40:6650–6657. doi: 10.1039/C5NJ03608A. DOI
Yadollahi M., Farhoudian S., Namazi H. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int. J. Biol. Macromol. 2015;79:37–43. doi: 10.1016/j.ijbiomac.2015.04.032. PubMed DOI
Sood S., Kumar A., Sharma N. Photocatalytic and antibacterial activity studies of ZnO nanoparticles synthesized by thermal decomposition of mechanochemically processed oxalate precursor. Chem. Sel. 2016;1:6925–6932. doi: 10.1002/slct.201601435. DOI
Amornpitoksuk P., Suwanboon S., Sangkanu S., Sukhoom A., Wudtipan J., Srijan K., Kaewtaro S. Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer. Powder Technol. 2011;212:432–438. doi: 10.1016/j.powtec.2011.06.028. DOI
Safdar M., Ozaslan M., Khailany R.A., Latif S., Junejo Y., Saeed M., Al-Attar M.S., Kanabe B.O. Synthesis, Characterization and Applications of a Novel Platinum-Based Nanoparticles: Catalytic, Antibacterial and Cytotoxic Studies. J. Inorg. Organomet. Polym. Mater. 2020;30:2430–2439. doi: 10.1007/s10904-019-01387-7. DOI
David L., Moldovan B. Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials. 2020;10:202. doi: 10.3390/nano10020202. PubMed DOI PMC
Liu X., Qi S., Li Y., Yang L., Cao B., Tang C.Y. Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly. Water Res. 2013;47:3081–3092. doi: 10.1016/j.watres.2013.03.018. PubMed DOI
Mahiuddin M., Saha P., Ochiai B. Green Synthesis and Catalytic Activity of Silver Nanoparticles Based on Piper chaba Stem Extracts. Nanomaterials. 2020;10:1777. doi: 10.3390/nano10091777. PubMed DOI PMC
Kourtis A.P., Hatfield K., Baggs J., Mu Y., See I., Epson E., Nadle J., Kainer M.A., Dumyati G., Petit S. Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections—United States. Morb. Mortal. Wkly. Rep. 2019;68:214. doi: 10.15585/mmwr.mm6809e1. PubMed DOI PMC
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI
Mandal S.K., Brahmachari S., Das P.K. In Situ Synthesised Silver Nanoparticle-Infused l-Lysine-Based Injectable Hydrogel: Development of a Biocompatible, Antibacterial, Soft Nanocomposite. ChemPlusChem. 2014;79:1733–1746.
Turner N.A., Sharma-Kuinkel B.K., Maskarinec S.A., Eichenberger E.M., Shah P.P., Carugati M., Holland T.L., Fowler V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019;17:203–218. doi: 10.1038/s41579-018-0147-4. PubMed DOI PMC
Ogugbue C.J., Sawidis T. Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol. Res. Int. 2011;2011 doi: 10.4061/2011/967925. PubMed DOI PMC
de Campos Ventura-Camargo B., Marin-Morales M.A. Azo dyes: Characterization and toxicity-a review. Text. Light Ind. Sci. Technol. 2013;2:85–103.
Saif S., Tahir A., Chen Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 2016;6:209. doi: 10.3390/nano6110209. PubMed DOI PMC
Lu H., Zhang L., Ma J., Alam N., Zhou X., Ni Y. Nano-cellulose/MOF derived carbon doped CuO/Fe3O4 nanocomposite as high efficient catalyst for organic pollutant remedy. Nanomaterials. 2019;9:277. doi: 10.3390/nano9020277. PubMed DOI PMC
Fang Y., Wu Q., Li H., Zhang B., Yan R., Chen J., Sun M. Photocatalytic activity of silver oxide capped Ag nanoparticles constructed by air plasma irradiation. Appl. Phys. Lett. 2018;112:163101. doi: 10.1063/1.5024770. DOI
Ouyang W., Kuna E., Yepez A., Balu A.M., Romero A.A., Colmenares J.C., Luque R. Mechanochemical synthesis of TiO2 nanocomposites as photocatalysts for benzyl alcohol photo-oxidation. Nanomaterials. 2016;6:93. doi: 10.3390/nano6050093. PubMed DOI PMC
Dasineh Khiavi N., Katal R., Kholghi Eshkalak S., Masudy-Panah S., Ramakrishna S., Jiangyong H. Visible light driven heterojunction photocatalyst of CuO–Cu2O thin films for photocatalytic degradation of organic pollutants. Nanomaterials. 2019;9:1011. doi: 10.3390/nano9071011. PubMed DOI PMC
Mills A., Le Hunte S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 1997;108:1–35. doi: 10.1016/S1010-6030(97)00118-4. DOI
Tryk D., Fujishima A., Honda K. Recent topics in photoelectrochemistry: Achievements and future prospects. Electrochim. Acta. 2000;45:2363–2376. doi: 10.1016/S0013-4686(00)00337-6. DOI
Malato S., Fernández-Ibáñez P., Maldonado M.I., Blanco J., Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today. 2009;147:1–59. doi: 10.1016/j.cattod.2009.06.018. DOI
Krishnamoorthy K., Mohan R., Kim S.-J. Graphene oxide as a photocatalytic material. Appl. Phys. Lett. 2011;98:244101. doi: 10.1063/1.3599453. DOI
Byrne J.A., Dunlop P.S.M., Hamilton J.W.J., Fernández-Ibáñez P., Polo-López I., Sharma P.K., Vennard A.S.M. A review of heterogeneous photocatalysis for water and surface disinfection. Molecules. 2015;20:5574–5615. doi: 10.3390/molecules20045574. PubMed DOI PMC
Gatto F., Moglianetti M., Pompa P.P., Bardi G. Platinum nanoparticles decrease reactive oxygen species and modulate gene expression without alteration of immune responses in THP-1 monocytes. Nanomaterials. 2018;8:392. doi: 10.3390/nano8060392. PubMed DOI PMC
Baeg E., Sooklert K., Sereemaspun A. Copper oxide nanoparticles cause a dose-dependent toxicity via inducing reactive oxygen species in drosophila. Nanomaterials. 2018;8:824. doi: 10.3390/nano8100824. PubMed DOI PMC
Yi Z., Ye J., Kikugawa N., Kako T., Ouyang S., Stuart-Williams H., Yang H., Cao J., Luo W., Li Z. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010;9:559–564. doi: 10.1038/nmat2780. PubMed DOI
McEvoy J.G., Zhang Z. Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J. Photochem. Photobiol. C Photochem. Rev. 2014;19:62–75. doi: 10.1016/j.jphotochemrev.2014.01.001. DOI
Amornpitoksuk P., Suwanboon S., Sangkanu S., Sukhoom A., Muensit N., Baltrusaitis J. Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer. Powder Technol. 2012;219:158–164. doi: 10.1016/j.powtec.2011.12.032. DOI
Xu Y.-S., Zhang W.-D. Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance. Dalton Trans. 2013;42:1094–1101. doi: 10.1039/C2DT31634J. PubMed DOI
Bagherzadeh M., Kaveh R. New Magnetically Recyclable Reduced Graphene Oxide rGO/MFe2O4 (M= Ca, Mg)/Ag3PO4 Nanocomposites with Remarkably Enhanced Visible-light Photocatalytic Activity and Stability. Photochem. Photobiol. 2018;94:1210–1224. doi: 10.1111/php.12968. PubMed DOI
Cao Q., Xiao L., Zeng L., Cao C., Wang J. Ag3PO4/chitosan/CdS nanocomposites exhibiting high photocatalytic activities under visible-light illumination. Powder Technol. 2017;321:1–8. doi: 10.1016/j.powtec.2017.08.015. DOI
Yao W., Zhang B., Huang C., Ma C., Song X., Xu Q. Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J. Mater. Chem. 2012;22:4050–4055. doi: 10.1039/c2jm14410g. DOI
Zhao F.-M., Pan L., Wang S., Deng Q., Zou J.-J., Wang L., Zhang X. Ag3PO4/TiO2 composite for efficient photodegradation of organic pollutants under visible light. Appl. Surf. Sci. 2014;317:833–838. doi: 10.1016/j.apsusc.2014.09.022. DOI
Li Y., Yu L., Li N., Yan W., Li X. Heterostructures of Ag3PO4/TiO2 mesoporous spheres with highly efficient visible light photocatalytic activity. J. Colloid Interface Sci. 2015;450:246–253. doi: 10.1016/j.jcis.2015.03.016. PubMed DOI
Samal A., Baral A., Das D.P. Silver Phosphate Based Photocatalysis: A Brief Review from Fundamentals to Applications. Photocatalytic Nanomater. Environ. Appl. 2018;27:276–315.
Miyasato R., Fujiwara M., Sato H., Yano T., Hashimoto H. Particle size effects of tetrahedron-shaped Ag3PO4 photocatalyst on water-oxidation activity and carrier recombination dynamics. Chem. Phys. Lett. X. 2019;2:100023. doi: 10.1016/j.cpletx.2019.100023. DOI
Guo J., Ouyang S., Zhou H., Kako T., Ye J. Ag3PO4/In(OH)3 composite photocatalysts with adjustable surface-electric property for efficient photodegradation of organic dyes under simulated solar-light irradiation. J. Phys. Chem. C. 2013;117:17716–17724. doi: 10.1021/jp4062972. DOI
Tang J., Gong W., Cai T., Xie T., Deng C., Peng Z., Deng Q. Novel visible light responsive Ag@(Ag2S/Ag3PO4) photocatalysts: Synergistic effect between Ag and Ag2S for their enhanced photocatalytic activity. RSC Adv. 2013;3:2543–2547. doi: 10.1039/c2ra22245k. DOI
Taddesse D., Anjejo G., Kebede D. Ph.D. Thesis. Haramaya University; Haramaya, Ethiopia: 2017. Zeolite Supported CdS/ZnO/Ag3PO4 Nano-Composite: Synthesis, Characterization and Photocatalytic Activity for the Degradation of Methylene Blue.
Berr M., Vaneski A., Susha A.S., Rodríguez-Fernández J., Döblinger M., Jäckel F., Rogach A.L., Feldmann J. Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation. Appl. Phys. Lett. 2010;97:093108. doi: 10.1063/1.3480613. DOI
Bagherzadeh M., Kaveh R., Ozkar S., Akbayrak S. Preparation and characterization of a new CdS-NiFe2O4/reduced graphene oxide photocatalyst and its use for degradation of methylene blue under visible light irradiation. Res. Chem. Intermed. 2018;44:5953–5979. doi: 10.1007/s11164-018-3466-1. DOI
Lin R., Ding Y. A review on the synthesis and applications of mesostructured transition metal phosphates. Materials. 2013;6:217–243. doi: 10.3390/ma6010217. PubMed DOI PMC
Liu J., Fu X., Chen S., Zhu Y. Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Appl. Phys. Lett. 2011;99:191903. doi: 10.1063/1.3660319. DOI
Zhu G., Cheng Z., Lv T., Pan L., Zhao Q., Sun Z. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells. Nanoscale. 2010;2:1229–1232. doi: 10.1039/c0nr00087f. PubMed DOI
Zhai T., Fang X., Li L., Bando Y., Golberg D. One-dimensional CdS nanostructures: Synthesis, properties, and applications. Nanoscale. 2010;2:168–187. doi: 10.1039/b9nr00415g. PubMed DOI
Yu J., Yang B., Cheng B. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance. Nanoscale. 2012;4:2670–2677. doi: 10.1039/c2nr30129f. PubMed DOI
Cao J., Sun J.Z., Hong J., Li H.Y., Chen H.Z., Wang M. Carbon Nanotube/CdS Core–Shell Nanowires Prepared by a Simple Room-Temperature Chemical Reduction Method. Adv. Mater. 2004;16:84–87. doi: 10.1002/adma.200306100. DOI
Bahnemann D., Kholuiskaya S., Dillert R., Kulak A., Kokorin A. Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Appl. Catal. B Environ. 2002;36:161–169. doi: 10.1016/S0926-3373(01)00301-0. DOI
Jo Y.K., Kim I.Y., Lee J.M., Nahm S., Choi J.-W., Hwang S.-J. Surface-anchored CdS@ Ag3PO4 nanocomposite with efficient visible light photocatalytic activity. Mater. Lett. 2014;114:152–155. doi: 10.1016/j.matlet.2013.09.091. DOI
Chava R.K., Do J.Y., Kang M. Fabrication of CdS-Ag3PO4 heteronanostructures for improved visible photocatalytic hydrogen evolution. J. Alloy. Compd. 2017;727:86–93. doi: 10.1016/j.jallcom.2017.08.108. DOI
Mirsalari S.A., Nezamzadeh-Ejhieh A. CdS–Ag3PO4 nano-catalyst: A brief characterization and kinetic study towards methylene blue photodegradation. Mater. Sci. Semicond. Process. 2021;122:105455. doi: 10.1016/j.mssp.2020.105455. DOI
Jing Z., Wang C., Wang G., Li W., Lu D. Preparation and antibacterial activities of undoped and palladium doped titania nanoparticles. J. Sol Gel Sci. Technol. 2010;56:121–127. doi: 10.1007/s10971-010-2284-8. DOI
Lin J., Qu W., Zhang S. Disposable biosensor based on enzyme immobilized on Au–chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal. Biochem. 2007;360:288–293. doi: 10.1016/j.ab.2006.10.030. PubMed DOI
Li J., Cai C., Li J., Li J., Li J., Sun T., Wang L., Wu H., Yu G. Chitosan-based nanomaterials for drug delivery. Molecules. 2018;23:2661. doi: 10.3390/molecules23102661. PubMed DOI PMC
Bandara S., Du H., Carson L., Bradford D., Kommalapati R. Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. Nanomaterials. 2020;10:1903. doi: 10.3390/nano10101903. PubMed DOI PMC
Kaczmarek M.B., Struszczyk-Swita K., Li X., Szczesna-Antczak M., Daroch M. Enzymatic Modifications of Chitin, Chitosan and Chitooligosaccharides. Front. Bioeng. Biotechnol. 2019;7:243. doi: 10.3389/fbioe.2019.00243. PubMed DOI PMC
Zhu H., Jiang R., Xiao L., Chang Y., Guan Y., Li X., Zeng G. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater. 2009;169:933–940. doi: 10.1016/j.jhazmat.2009.04.037. PubMed DOI
Liu S., Guo Z., Qian X., Zhang J., Liu J., Lin J. Sonochemical deposition of ultrafine metallic Pt nanoparticles on CdS for efficient photocatalytic hydrogen evolution. Sustain. Energy Fuels. 2019;3:1048–1054. doi: 10.1039/C9SE00050J. DOI
Zhao X., Guan J., Li J., Li X., Wang H., Huo P., Yan Y. CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 2021;537:147891. doi: 10.1016/j.apsusc.2020.147891. DOI
Wang D., Song Y., Cai J., Wu L., Li Z. Effective photo-reduction to deposit Pt nanoparticles on MIL-100 (Fe) for visible-light-induced hydrogen evolution. New J. Chem. 2016;40:9170–9175. doi: 10.1039/C6NJ01989G. DOI
Boomi P., Prabu H.G., Mathiyarasu J. Synthesis, characterization and antibacterial activity of polyaniline/Pt–Pd nanocomposite. Eur. J. Med. Chem. 2014;72:18–25. doi: 10.1016/j.ejmech.2013.09.049. PubMed DOI
Rahimi N., Doroodmand M.M., Ghahremani A. Fabrication of a novel casein phosphopeptides/multi-walled carbon nanotubes/micro hybrid resin as mixed matrix membrane-junction reference electrode. J. Electroanal. Chem. 2015;745:98–105. doi: 10.1016/j.jelechem.2015.02.007. DOI
Bharathi D., Vasantharaj S., Bhuvaneshwari V. Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity. Mater. Res. Express. 2018;5:055404. doi: 10.1088/2053-1591/aac2ef. DOI
Mutalik C., Wang D.-Y., Krisnawati D.I., Jazidie A., Yougbare S., Kuo T.-R. Light-activated heterostructured nanomaterials for antibacterial applications. Nanomaterials. 2020;10:643. doi: 10.3390/nano10040643. PubMed DOI PMC
Zhao C., Feng B., Li Y., Tan J., Lu X., Weng J. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light. Appl. Surf. Sci. 2013;280:8–14. doi: 10.1016/j.apsusc.2013.04.057. DOI
Plachá D., Muñoz-Bonilla A., Škrlová K., Echeverria C., Chiloeches A., Petr M., Lafdi K., Fernández-García M. Antibacterial Character of Cationic Polymers Attached to Carbon-Based Nanomaterials. Nanomaterials. 2020;10:1218. doi: 10.3390/nano10061218. PubMed DOI PMC
Fu J., Chang B., Tian Y., Xi F., Dong X. Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: In situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A. 2013;1:3083–3090. doi: 10.1039/c2ta00672c. DOI
Guibal E., Cambe S., Bayle S., Taulemesse J.-M., Vincent T. Silver/chitosan/cellulose fibers foam composites: From synthesis to antibacterial properties. J. Colloid Interface Sci. 2013;393:411–420. doi: 10.1016/j.jcis.2012.10.057. PubMed DOI
Botelho G., Andres J., Gracia L., Matos L.S., Longo E. Photoluminescence and photocatalytic properties of Ag3PO4 microcrystals: An experimental and theoretical investigation. ChemPlusChem. 2016;81:202–212. doi: 10.1002/cplu.201500485. PubMed DOI
Zhang W., Hu C., Zhai W., Wang Z., Sun Y., Chi F., Ran S., Liu X., Lv Y. Novel Ag3PO4/CeO2 pn hierarchical heterojunction with enhanced photocatalytic performance. Mater. Res. 2016;19:673–679. doi: 10.1590/1980-5373-MR-2016-0009. DOI
Sepahvand S., Farhadi S. Fullerene-modified magnetic silver phosphate (Ag3PO4/Fe3O4/C60) nanocomposites: Hydrothermal synthesis, characterization and study of photocatalytic, catalytic and antibacterial activities. RSC Adv. 2018;8:10124–10140. doi: 10.1039/C8RA00069G. PubMed DOI PMC
Zheng C., Yang H., Cui Z., Zhang H., Wang X. A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res. Lett. 2017;12:1–12. doi: 10.1186/s11671-017-2377-1. PubMed DOI PMC
Cui Z., Yang H., Zhao X. Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction nanocomposites. Mater. Sci. Eng. B. 2018;229:160–172. doi: 10.1016/j.mseb.2017.12.037. DOI
Hummers W.S., Jr., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Akbarzadeh E., Setayesh S.R., Gholami M.R. Synthesis of the visible-light-driven Ag3VO4/Ag3PO4/Ag photocatalysts with enhanced photocatalytic activity. RSC Adv. 2016;6:14909–14915. doi: 10.1039/C6RA00279J. DOI
Bagherzadeh M., Kaveh R. A new SnS2-BiFeO3/reduced graphene oxide photocatalyst with superior photocatalytic capability under visible light irradiation. J. Photochem. Photobiol. A Chem. 2018;359:11–22. doi: 10.1016/j.jphotochem.2018.03.031. DOI
Bi Y., Ouyang S., Cao J., Ye J. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X= Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Phys. Chem. Chem. Phys. 2011;13:10071–10075. doi: 10.1039/c1cp20488b. PubMed DOI
Tong H., Ouyang S., Bi Y., Umezawa N., Oshikiri M., Ye J. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012;24:229–251. doi: 10.1002/adma.201102752. PubMed DOI
Chen X., Dai Y., Wang X. Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: A review. J. Alloy. Compd. 2015;649:910–932. doi: 10.1016/j.jallcom.2015.07.174. DOI
Li G., Wang Y., Mao L. Recent progress in highly efficient Ag-based visible-light photocatalysts. RSC Adv. 2014;4:53649–53661. doi: 10.1039/C4RA08044K. DOI
Yang Z.-M., Huang G.-F., Huang W.-Q., Wei J.-M., Yan X.-G., Liu Y.-Y., Jiao C., Wan Z., Pan A. Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. J. Mater. Chem. A. 2014;2:1750–1756. doi: 10.1039/C3TA14286H. DOI
Tang Y., Jiang Z., Xing G., Li A., Kanhere P.D., Zhang Y., Sum T.C., Li S., Chen X., Dong Z. Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Adv. Funct. Mater. 2013;23:2932–2940. doi: 10.1002/adfm.201203379. DOI
Wang D., Li Z., Shang L., Liu J., Shen J. Heterostructured Ag3PO4/TiO2 film with high efficiency for degradation of methyl orange under visible light. Thin Solid Film. 2014;551:8–12. doi: 10.1016/j.tsf.2013.11.006. DOI
Cui X., Li Y., Zhang Q., Wang H. Silver orthophosphate immobilized on flaky layered double hydroxides as the visible-light-driven photocatalysts. Int. J. Photoenergy. 2012;2012 doi: 10.1155/2012/263254. DOI
Wang Q., Cai J., Zhang L. In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose. 2014;21:3371–3382. doi: 10.1007/s10570-014-0340-1. DOI
Wang W., Cheng B., Yu J., Liu G., Fan W. Visible-light photocatalytic activity and deactivation mechanism of Ag3PO4 spherical particles. Chem. Asian J. 2012;7:1902–1908. doi: 10.1002/asia.201200197. PubMed DOI
Dong P., Xi X., Hou G. Typical non-TiO2-based visible-light photocatalysts. Semicond. Photocatal. Mater. Mech. Appl. 2016 doi: 10.5772/62889. DOI
Yan T., Zhang H., Liu Y., Guan W., Long J., Li W., You J. Fabrication of robust M/Ag3PO4 (M= Pt, Pd, Au) Schottky-type heterostructures for improved visible-light photocatalysis. RSC Adv. 2014;4:37220–37230. doi: 10.1039/C4RA06254J. DOI
Chen S., Chen X., Jiang Q., Yuan J., Lin C., Shangguan W. Promotion effect of nickel loaded on CdS for photocatalytic H2 production in lactic acid solution. Appl. Surf. Sci. 2014;316:590–594. doi: 10.1016/j.apsusc.2014.08.053. DOI
Cheng F., Liu W.-S., Juan W., Wang Y.-K. Research progress of Ag3PO4-based photocatalyst: Fundamentals and performance enhancement. Trans. Nonferrous Met. Soc. China. 2015;25:112–121.
Thiyagarajan S., Singh S., Bahadur D. Reusable sunlight activated photocatalyst Ag3PO4 and its significant antibacterial activity. Mater. Chem. Phys. 2016;173:385–394. doi: 10.1016/j.matchemphys.2016.02.027. DOI
Carlson C., Hussain S.M., Schrand A.M., Braydich-Stolle L.K., Hess K.L., Jones R.L., Schlager J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 2008;112:13608–13619. doi: 10.1021/jp712087m. PubMed DOI
Azizi M., Sedaghat S., Tahvildari K., Derakhshi P., Ghaemi A. Synthesis of silver nanoparticles using Peganum harmala extract as a green route. Green Chem. Lett. Rev. 2017;10:420–427. doi: 10.1080/17518253.2017.1395081. DOI
Harish R., Nisha K., Prabakaran S., Sridevi B., Harish S., Navaneethan M., Ponnusamy S., Hayakawa Y., Vinniee C., Ganesh M. Cytotoxicity assessment of chitosan coated CdS nanoparticles for bio-imaging applications. Appl. Surf. Sci. 2020;499:143817. doi: 10.1016/j.apsusc.2019.143817. DOI
Majhi D., Das K., Mishra A., Dhiman R., Mishra B. One pot synthesis of CdS/BiOBr/Bi2O2CO3: A novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine. Appl. Catal. B Environ. 2020;260:118222. doi: 10.1016/j.apcatb.2019.118222. DOI
Zhang C., Wang J., Chi R., Shi J., Yang Y., Zhang X. Reduced graphene oxide loaded with MoS2 and Ag3PO4 nanoparticles/PVA interpenetrating hydrogels for improved mechanical and antibacterial properties. Mater. Des. 2019;183:108166. doi: 10.1016/j.matdes.2019.108166. DOI
Cao Y., Zhang Y.-H., Yu X.-H., Wang H.-J. Facile synthesis and antineoplastic activity of bovine serum albumin-conjugated Ag/Ca phosphate nanocomposites. Micro Nano Lett. 2012;7:489–491. doi: 10.1049/mnl.2012.0105. DOI