PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation

. 2009 Oct ; 7 (10) : 1693-703. [epub] 20091013

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19825991

Grantová podpora
R01 DA016368 NIDA NIH HHS - United States
R01 HL078381 NHLBI NIH HHS - United States
R15 NR009021 NINR NIH HHS - United States
HL 78381 NHLBI NIH HHS - United States

Odkazy

PubMed 19825991
PubMed Central PMC3193075
DOI 10.1158/1541-7786.mcr-09-0031
PII: 1541-7786.MCR-09-0031
Knihovny.cz E-zdroje

Hematopoietic transcription factors GATA-1 and PU.1 bind each other on DNA to block transcriptional programs of undesired lineage during hematopoietic commitment. Murine erythroleukemia (MEL) cells that coexpress GATA-1 and PU.1 are blocked at the blast stage but respond to molecular removal (downregulation) of PU.1 or addition (upregulation) of GATA-1 by inducing terminal erythroid differentiation. To test whether GATA-1 blocks PU.1 in MEL cells, we have conditionally activated a transgenic PU.1 protein fused with the estrogen receptor ligand-binding domain (PUER), resulting in activation of a myeloid transcriptional program. Gene expression arrays identified components of the PU.1-dependent transcriptome negatively regulated by GATA-1 in MEL cells, including CCAAT/enhancer binding protein alpha (Cebpa) and core-binding factor, beta subunit (Cbfb), which encode two key hematopoietic transcription factors. Inhibition of GATA-1 by small interfering RNA resulted in derepression of PU.1 target genes. Chromatin immunoprecipitation and reporter assays identified PU.1 motif sequences near Cebpa and Cbfb that are co-occupied by PU.1 and GATA-1 in the leukemic blasts. Significant derepression of Cebpa and Cbfb is achieved in MEL cells by either activation of PU.1 or knockdown of GATA-1. Furthermore, transcriptional regulation of these loci by manipulating the levels of PU.1 and GATA-1 involves quantitative increases in a transcriptionally active chromatin mark: acetylation of histone H3K9. Collectively, we show that either activation of PU.1 or inhibition of GATA-1 efficiently reverses the transcriptional block imposed by GATA-1 and leads to the activation of a myeloid transcriptional program directed by PU.1.

Zobrazit více v PubMed

Graf T. Immunology: blood lines redrawn. Nature. 2008;452:702–3. PubMed

DeKoter RP, Kamath MB, Houston IB. Analysis of concentration-dependent functions of PU.1 in hematopoiesis using mouse models. Blood Cells Mol Dis. 2007;39:316–20. PubMed PMC

Dahl R, Simon MC. The importance of PU.1 concentration in hematopoietic lineage commitment and maturation. Blood Cells Mol Dis. 2003;31:229–33. PubMed

Arinobu Y, Mizuno S, Chong Y, et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell. 2007;1:416–27. PubMed

Laslo P, Spooner CJ, Warmflash A, et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell. 2006;126:755–66. PubMed

Feng R, Desbordes SC, Xie H, et al. PU.1 and C/EBPα/β convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci U S A. 2008;105:6057–62. PubMed PMC

Huang G, Zhang P, Hirai H, et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat Genet. 2008;40:51–60. PubMed

Rosenbauer F, Wagner K, Kutok JL, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet. 2004;36:624–30. PubMed

Metcalf D, Dakic A, Mifsud S, Di Rago L, Wu L, Nutt S. Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci U S A. 2006;103:1486–91. PubMed PMC

Mueller BU, Pabst T. C/EBPα and the pathophysiology of acute myeloid leukemia. Curr Opin Hematol. 2006;13:7–14. PubMed

Kim SI, Bresnick EH. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene. 2007;26:6777–94. PubMed

Jing H, Vakoc CR, Ying L, et al. Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus [see comment] Mol Cell. 2008;29:232–42. PubMed PMC

Mueller BU, Pabst T, Osato M, et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood. 2002;100:998–1007. PubMed

Wechsler J, Greene M, McDevitt MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32:148–52. PubMed

Freson K, Thys C, Wittewrongel C, Vermylen J, Hoylaerts MF, Van Geet C. Molecular cloning and characterization of the GATA1 cofactor human FOG1 and assessment of its binding to GATA1 proteins carrying D218 substitutions. Hum Genet. 2003;112:42–9. PubMed

Moreau-Gachelin F, Tavitian A, Tambourin P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature. 1988;331:277–80. PubMed

Papetti M, Skoultchi AI. Reprogramming leukemia cells to terminal differentiation and growth arrest by RNA interference of PU.1. Mol Cancer Res. 2007;5:1053–62. PubMed PMC

Choe KS, Radparvar F, Matushansky I, Rekhtman N, Han X, Skoultchi AI. Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by GATA-1. Cancer Res. 2003;63:6363–9. PubMed

Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev. 1999;13:1398–411. PubMed PMC

Zhang P, Behre G, Pan J, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci U S A. 1999;96:8705–10. PubMed PMC

Nerlov C, Querfurth E, Kulessa H, Graf T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood. 2000;95:2543–51. PubMed

Rekhtman N, Choe KS, Matushansky I, Murray S, Stopka T, Skoultchi AI. PU.1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation. Mol Cell Biol. 2003;23:7460–74. PubMed PMC

Stopka T, Amanatullah DF, Papetti M, Skoultchi AI. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J. 2005;24:3712–23. PubMed PMC

Rao G, Rekhtman N, Cheng G, Krasikov T, Skoultchi AI. Deregulated expression of the PU.1 transcription factor blocks murine erythroleukemia cell terminal differentiation. Oncogene. 1997;14:123–31. PubMed

Kirstetter P, Schuster MB, Bereshchenko O, et al. Modeling of C/EBPα mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells [see comment] Cancer Cell. 2008;13:299–310. PubMed

Miller J, Horner A, Stacy T, et al. The core-binding factor β subunit is required for bone formation and hematopoietic maturation. Nat Genet. 2002;32:645–9. PubMed

Shivdasani RA, Orkin SH. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci U S A. 1995;92:8690–4. PubMed PMC

Tsang AP, Visvader JE, Turner CA, et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell. 1997;90:109–19. PubMed

Shigesada K, van de Sluis B, Liu PP. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene. 2004;23:4297–307. PubMed

Wang Q, Stacy T, Miller JD, et al. The CBFβ subunit is essential for CBFα 2 (AML1) function in vivo. Cell. 1996;87:697–708. PubMed

Kundu M, Compton S, Garrett-Beal L, et al. Runx1 deficiency predisposes mice to T-lymphoblastic lymphoma. Blood. 2005;106:3621–4. PubMed PMC

Ganly P, Walker LC, Morris CM. Familial mutations of the transcription factor RUNX1 (AML1, CBFA2) predispose to acute myeloid leukemia. Leuk Lymphoma. 2004;45:1–10. PubMed

de Bruijn MF, Speck NA. Core-binding factors in hematopoiesis and immune function. Oncogene. 2004;23:4238–48. PubMed

Faber J, Krivtsov AV, Stubbs MC, et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood. 2008;113:2375–85. PubMed PMC

Jin G, Yamazaki Y, Takuwa M, et al. Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood. 2007;109:3998–4005. PubMed

Ji M, Li H, Suh HC, Klarmann KD, Yokota Y, Keller JR. Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood. 2008;112:1068–77. PubMed PMC

Nutt SL, Metcalf D, D’Amico A, Polli M, Wu L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med. 2005;201:221–31. PubMed PMC

Durual S, Rideau A, Ruault-Jungblut S, et al. Lentiviral PU.1 overexpression restores differentiation in myeloid leukemic blasts. Leukemia. 2007;21:1050–9. PubMed

Mueller BU, Pabst T, Fos J, et al. ATRA resolves the differentiation block in t (15;17) acute myeloid leukemia by restoring PU.1 expression. Blood. 2006;107:3330–8. PubMed PMC

Jost E, do ON, Wilop S, Herman JG, Osieka R, Galm O. Aberrant DNA methylation of the transcription factor C/EBPα in acute myelogenous leukemia. Leuk Res. 2008;33:443–9. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...