Silver Nanoparticles Stabilized with Phosphorus-Containing Heterocyclic Surfactants: Synthesis, Physico-Chemical Properties, and Biological Activity Determination
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0686/21
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0054/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-17-0373
Agentúra na Podporu Výskumu a Vývoja
PubMed
34443714
PubMed Central
PMC8399434
DOI
10.3390/nano11081883
PII: nano11081883
Knihovny.cz E-zdroje
- Klíčová slova
- Hep G2 cells, cytotoxicity, dynamic light scattering, phosphonium, silver nanoparticles, zeta potential,
- Publikační typ
- časopisecké články MeSH
Phosphorus-containing heterocyclic cationic surfactants alkyldimethylphenylphospholium bromides with the alkyl chain length 14 to 18 carbon atoms were used for the stabilization of silver nanodispersions. Zeta potential of silver nanodispersions ranges from +35 to +70 mV, which indicates the formation of stable silver nanoparticles (AgNPs). Long-chain heptadecyl and octadecyl homologs of the surfactants series provided the most intensive stabilizing effect to AgNPs, resulting in high positive zeta potential values and smaller diameter of AgNPs in the range 50-60 nm. A comparison with non-heterocyclic alkyltrimethylphosphonium surfactants of the same alkyl chain length showed better stability and more positive zeta potential values for silver nanodispersions stabilized with heterocyclic phospholium surfactants. Investigations of biological activity of phospholium-capped AgNPs are represented by the studies of antimicrobial activity and cytotoxicity. While cytotoxicity results revealed an increased level of HepG2 cell growth inhibition as compared with the cytotoxicity level of silver-free surfactant solutions, no enhanced antimicrobial action of phospholium-capped AgNPs against microbial pathogens was observed. The comparison of cytotoxicity of AgNPs stabilized with various non-heterocyclic ammonium and phosphonium surfactants shows that AgNPs capped with heterocyclic alkyldimethylphenylphospholium and non-heterocyclic triphenyl-substituted phosphonium surfactants have the highest cytotoxicity among silver nanodispersions stabilized by the series of ammonium and phosphonium surfactants.
Comenius University SK 81499 Bratislava Slovakia
Faculty of Pharmacy Comenius University SK 83232 Bratislava Slovakia
Materials Research Centre Faculty of Chemistry University of Technology CZ 61200 Brno Czech Republic
Zobrazit více v PubMed
Chen P., Hu Y., Gao Z., Zhai J., Fang D., Yue T., Zhang C., Sun W. Discovery of a Novel Cationic Surfactant: Tributyltetradecyl-Phosphonium Chloride for Iron Ore Flotation: From Prediction to Experimental Verification. Minerals. 2017;7:240. doi: 10.3390/min7120240. DOI
Rodríguez-Palmeiro I., Rodríguez-Escontrela I., Rodríguez O., Soto A., Reichmann S., Amro M.M. Tributyl(Tetradecyl)Phosphonium Chloride Ionic Liquid for Surfactant-Enhanced Oil Recovery. Energy Fuels. 2017;31:6758–6765. doi: 10.1021/acs.energyfuels.7b00544. DOI
Schnee V.P., Palmer C.P. Characterization of a Cationic Phosphonium Surfactant for Micellar Electrokinetic Chromatography: Using the Linear Solvation Energy Relationships Model. Electrophoresis. 2008;29:761–766. doi: 10.1002/elps.200700533. PubMed DOI
Tawfik S.M., Sayed A., Aiad I. Corrosion Inhibition by Some Cationic Surfactants in Oil Fields. J. Surfactants Deterg. 2012;15:577–585. doi: 10.1007/s11743-012-1339-y. DOI
Aiad I.A., Tawfik S.M., Shaban S.M., Abd-Elaal A.A., El-Shafie M. Enhancing of Corrosion Inhibition and the Biocidal Effect of Phosphonium Surfactant Compounds for Oil Field Equipment. J. Surfactants Deterg. 2014;17:391–401. doi: 10.1007/s11743-013-1512-y. DOI
Dos Santos E., Fook M., Malta O., de Lima Silva S., Leite I. Role of Surfactants in the Properties of Poly(Ethylene Terephthalate)/Purified Clay Nanocomposites. Materials. 2018;11:1397. doi: 10.3390/ma11081397. PubMed DOI PMC
Xie W., Xie R., Pan W.-P., Hunter D., Koene B., Tan L.-S., Vaia R. Thermal Stability of Quaternary Phosphonium Modified Montmorillonites. Chem. Mater. 2002;14:4837–4845. doi: 10.1021/cm020705v. DOI
Hedley C., Yuan G., Theng B. Thermal Analysis of Montmorillonites Modified with Quaternary Phosphonium and Ammonium Surfactants. Appl. Clay Sci. 2007;35:180–188. doi: 10.1016/j.clay.2006.09.005. DOI
Durazo S.A., Kompella U.B. Functionalized Nanosystems for Targeted Mitochondrial Delivery. Mitochondrion. 2012;12:190–201. doi: 10.1016/j.mito.2011.11.001. PubMed DOI PMC
Boddapati S.V., D’Souza G.G.M., Erdogan S., Torchilin V.P., Weissig V. Organelle-Targeted Nanocarriers: Specific Delivery of Liposomal Ceramide to Mitochondria Enhances Its Cytotoxicity In Vitro and In Vivo. Nano Lett. 2008;8:2559–2563. doi: 10.1021/nl801908y. PubMed DOI
Boddapati S.V., D’Souza G.G.M., Weissig V. Liposomes for Drug Delivery to Mitochondria. In: Weissig V., editor. Liposomes. Volume 605. Humana Press; Totowa, NJ, USA: 2010. pp. 295–303. Methods in Molecular Biology. PubMed
Xue Y., Xiao H., Zhang Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015;16:3626–3655. doi: 10.3390/ijms16023626. PubMed DOI PMC
Chang L., Zhang X., Shi X., Zhao L., Liu X.M. Synthesis and Characterization of a Novel Fibrous Antibacterial Fiber with Organophorsphor Functional Groups. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40935. DOI
Nonaka T., Hua L., Ogata T., Kurihara S. Synthesis of Water-Soluble Thermosensitive Polymers Having Phosphonium Groups from Methacryloyloxyethyl Trialkyl Phosphonium Chlorides-N-Isopropylacrylamide Copolymers and Their Functions. J. Appl. Polym. Sci. 2003;87:386–393. doi: 10.1002/app.11362. DOI
Kenawy E. Biologically Active Polymers: Synthesis and Antimicrobial Activity of Modified Glycidyl Methacrylate Polymers Having a Quaternary Ammonium and Phosphonium Groups. J. Control. Release. 1998;50:145–152. doi: 10.1016/S0168-3659(97)00126-0. PubMed DOI
Kenawy E.-R., Abdel-Hay F.I., El-Shanshoury A.E.-R.R., El-Newehy M.H. Biologically Active Polymers. V. Synthesis and Antimicrobial Activity of Modified Poly(Glycidyl Methacrylate-Co-2-Hydroxyethyl Methacrylate) Derivatives with Quaternary Ammonium and Phosphonium Salts. J. Polym. Sci. Part A Polym. Chem. 2002;40:2384–2393. doi: 10.1002/pola.10325. DOI
El-Newehy M.H., Kenawy E.-R., Al-Deyab S.S. Biocidal Polymers: Preparation and Antimicrobial Assessment of Immobilized Onium Salts onto Modified Chitosan. Int. J. Polym. Mater. Polym. Biomater. 2014;63:758–766. doi: 10.1080/00914037.2013.879448. DOI
Qiu T., Zeng Q., Ao N. Preparation and Characterization of Chlorinated Nature Rubber (CNR) Based Polymeric Quaternary Phosphonium Salt Bactericide. Mater. Lett. 2014;122:13–16. doi: 10.1016/j.matlet.2014.01.135. DOI
Selva M., Perosa A., Noè M. Phosphonium salts and P-ylides. In: Allen D.W., Loakes D., Tebby J.C., editors. Organophosphorus Chemistry. Volume 45. Royal Society of Chemistry; Cambridge, UK: 2016. pp. 132–169.
Bakshi M.S., Kaur I. Triphenyl- and Tributyl-Phosphonium Head Groups Contributions in Mixed Cationic Surfactants and Anionic Polyelectrolytes Aggregates. Colloids Surf. A Physicochem. Eng. Asp. 2003;227:9–19. doi: 10.1016/S0927-7757(03)00381-9. DOI
Bakshi M.S., Singh J., Singh K., Kaur G. Mixed Micelles of Cationic Gemini with Tetraalkyl Ammonium and Phosphonium Surfactants: The Head Group and Hydrophobic Tail Contributions. Colloids Surf. A Physicochem. Eng. Asp. 2004;234:77–84. doi: 10.1016/j.colsurfa.2003.12.008. DOI
Prasad M., Moulik S.P., Wardian A.A., Moore S., van Bommel A., Palepu R. Alkyl (C10, C12, C14 and C16) Triphenyl Phosphonium Bromide Influenced Cloud Points of Nonionic Surfactants (Triton X 100, Brij 56 and Brij 97) and the Polymer (Polyvinyl Methyl Ether) Colloid Polym. Sci. 2005;283:887–897. doi: 10.1007/s00396-004-1231-z. DOI
Moore S.A., Glenn K.M., MacDonald A.M., Palepu R.M. Micellar and Associated Thermodynamic Properties of Binary Mixtures of Alkyl Triphenyl Phosphonium Bromides in Ethylene Glycol and Water Mixtures. Colloid Polym. Sci. 2007;285:543–552. doi: 10.1007/s00396-006-1604-6. DOI
Shrivastava A., Ghosh K.K. Micellization of Cetyl Triphenyl Phosphonium Bromide Surfactant in Binary Aqueous Solvents. J. Surfactants Deterg. 2008;11:287–292. doi: 10.1007/s11743-008-1083-5. DOI
Verma S.K., Ghosh K.K. Micellar and Surface Properties of Some Monomeric Surfactants and a Gemini Cationic Surfactant. J. Surfactants Deterg. 2011;14:347–352. doi: 10.1007/s11743-010-1237-0. DOI
Gainanova G.A., Vagapova G.I., Syakaev V.V., Ibragimova A.R., Valeeva F.G., Tudriy E.V., Galkina I.V., Kataeva O.N., Zakharova L.Y., Latypov S.K., et al. Self-Assembling Systems Based on Amphiphilic Alkyltriphenylphosphonium Bromides: Elucidation of the Role of Head Group. J. Colloid Interface Sci. 2012;367:327–336. doi: 10.1016/j.jcis.2011.10.074. PubMed DOI
Vagapova G.I., Valeeva F.G., Gainanova G.A., Syakaev V.V., Galkina I.V., Zakharova L.Y., Latypov S.K., Konovalov A.I. Novel Self-Assembling Systems Based on Amphiphilic Phosphonium Salt and Polyethylene Glycol. Kinetic Arguments for Synergetic Aggregation Behavior. Colloids Surf. A Physicochem. Eng. Asp. 2013;419:186–193. doi: 10.1016/j.colsurfa.2012.11.071. DOI
Lu F., Shi L., Gu Y., Yang X., Zheng L. Aggregation Behavior of Alkyl Triphenyl Phosphonium Bromides in Aprotic and Protic Ionic Liquids. Colloid Polym. Sci. 2013;291:2375–2384. doi: 10.1007/s00396-013-2986-x. DOI
Lukáč M., Devínsky F., Pisárčik M., Papapetropoulou A., Bukovský M., Horváth B. Novel Phospholium-Type Cationic Surfactants: Synthesis, Aggregation Properties and Antimicrobial Activity. J. Surfactants Deterg. 2017;20:159–171. doi: 10.1007/s11743-016-1908-6. DOI
Gamarra A., Urpí L., Martínez de Ilarduya A., Muñoz-Guerra S. Crystalline Structure and Thermotropic Behavior of Alkyltrimethylphosphonium Amphiphiles. Phys. Chem. Chem. Phys. 2017;19:4370–4382. doi: 10.1039/C6CP08304H. PubMed DOI
Rauber D., Heib F., Schmitt M., Hempelmann R. Trioctylphosphonium Room Temperature Ionic Liquids with Perfluorinated Groups—Physical Properties and Surface Behavior in Comparison with the Nonfluorinated Analogues. Colloids Surf. A Physicochem. Eng. Asp. 2018;537:116–125. doi: 10.1016/j.colsurfa.2017.10.013. DOI
Slepička P., Slepičková Kasálková N., Siegel J., Kolská Z., Švorčík V. Methods of Gold and Silver Nanoparticles Preparation. Materials. 2019;13:1. doi: 10.3390/ma13010001. PubMed DOI PMC
Guzman M., Dille J., Godet S. Synthesis and Antibacterial Activity of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria. Nanomed. Nanotechnol. Biol. Med. 2012;8:37–45. doi: 10.1016/j.nano.2011.05.007. PubMed DOI
Lara H.H., Garza-Trevino E.N., Ixtepan-Turrent L., Singh D.K. Silver Nanoparticles Are Broad-Spectrum Bactericidal and Virucidal Compounds. J. Nanobiotechnol. 2011;9:30. doi: 10.1186/1477-3155-9-30. PubMed DOI PMC
Ortiz C., Torres R., Paredes D. Synthesis, Characterization, and Evaluation of Antibacterial Effect of Ag Nanoparticles against Escherichia Coli O157:H7 and Methicillin- Resistant Staphylococcus Aureus (MRSA) IJN. 2014:1717. doi: 10.2147/IJN.S57156. PubMed DOI PMC
Skonieczna M., Hudy D. Biological Activity of Silver Nanoparticles and Their Applications in Anticancer Therapy. In: Maaz K., editor. Silver Nanoparticles—Fabrication, Characterization and Applications. InTech; London, UK: 2018.
Buttacavoli M., Albanese N.N., Cara G.D., Alduina R., Faleri C., Gallo M., Pizzolanti G., Gallo G., Feo S., Baldi F., et al. Anticancer Activity of Biogenerated Silver Nanoparticles: An Integrated Proteomic Investigation. Oncotarget. 2018;9:9685. doi: 10.18632/oncotarget.23859. PubMed DOI PMC
Yeşilot Ş., Aydın Acar Ç. Silver Nanoparticles; a New Hope in Cancer Therapy? East. J. Med. 2019;24:111–116. doi: 10.5505/ejm.2019.66487. DOI
Soni N., Dhiman R.C. Phytochemical, Anti-Oxidant, Larvicidal, and Antimicrobial Activities of Castor (Ricinus Communis) Synthesized Silver Nanoparticles. Chin. Herb. Med. 2017;9:289–294. doi: 10.1016/S1674-6384(17)60106-0. DOI
Arumai Selvan D., Mahendiran D., Senthil Kumar R., Kalilur Rahiman A. Garlic, Green Tea and Turmeric Extracts-Mediated Green Synthesis of Silver Nanoparticles: Phytochemical, Antioxidant and in Vitro Cytotoxicity Studies. J. Photochem. Photobiol. B Biol. 2018;180:243–252. doi: 10.1016/j.jphotobiol.2018.02.014. PubMed DOI
Jiang Q., Yu S., Li X., Ma C., Li A. Evaluation of Local Anesthetic Effects of Lidocaine-Ibuprofen Ionic Liquid Stabilized Silver Nanoparticles in Male Swiss Mice. J. Photochem. Photobiol. B Biol. 2018;178:367–370. doi: 10.1016/j.jphotobiol.2017.11.028. PubMed DOI
Karthik C.S., Manukumar H.M., Ananda A.P., Nagashree S., Rakesh K.P., Mallesha L., Qin H.-L., Umesha S., Mallu P., Krishnamurthy N.B. Synthesis of Novel Benzodioxane Midst Piperazine Moiety Decorated Chitosan Silver Nanoparticle against Biohazard Pathogens and as Potential Anti-Inflammatory Candidate: A Molecular Docking Studies. Int. J. Biol. Macromol. 2018;108:489–502. doi: 10.1016/j.ijbiomac.2017.12.045. PubMed DOI
Domeradzka-Gajda K., Nocuń M., Roszak J., Janasik B., Quarles C.D., Wąsowicz W., Grobelny J., Tomaszewska E., Celichowski G., Ranoszek-Soliwoda K., et al. A Study on the in Vitro Percutaneous Absorption of Silver Nanoparticles in Combination with Aluminum Chloride, Methyl Paraben or Di-n-Butyl Phthalate. Toxicol. Lett. 2017;272:38–48. doi: 10.1016/j.toxlet.2017.03.006. PubMed DOI
Kraeling M.E.K., Topping V.D., Keltner Z.M., Belgrave K.R., Bailey K.D., Gao X., Yourick J.J. In Vitro Percutaneous Penetration of Silver Nanoparticles in Pig and Human Skin. Regul. Toxicol. Pharmacol. 2018;95:314–322. doi: 10.1016/j.yrtph.2018.04.006. PubMed DOI
Pannerselvam B., Dharmalingam Jothinathan M.K., Rajenderan M., Perumal P., Pudupalayam Thangavelu K., Kim H.J., Singh V., Rangarajulu S.K. An in Vitro Study on the Burn Wound Healing Activity of Cotton Fabrics Incorporated with Phytosynthesized Silver Nanoparticles in Male Wistar Albino Rats. Eur. J. Pharm. Sci. 2017;100:187–196. doi: 10.1016/j.ejps.2017.01.015. PubMed DOI
Zhou Y., Tang R.-C. Facile and Eco-Friendly Fabrication of AgNPs Coated Silk for Antibacterial and Antioxidant Textiles Using Honeysuckle Extract. J. Photochem. Photobiol. B Biol. 2018;178:463–471. doi: 10.1016/j.jphotobiol.2017.12.003. PubMed DOI
Kumar S., Shukla A., Baul P.P., Mitra A., Halder D. Biodegradable Hybrid Nanocomposites of Chitosan/Gelatin and Silver Nanoparticles for Active Food Packaging Applications. Food Packag. Shelf Life. 2018;16:178–184. doi: 10.1016/j.fpsl.2018.03.008. DOI
Padnya P., Gorbachuk V., Stoikov I. The Role of Calix[n]Arenes and Pillar[n]Arenes in the Design of Silver Nanoparticles: Self-Assembly and Application. Int. J. Mol. Sci. 2020;21:1425. doi: 10.3390/ijms21041425. PubMed DOI PMC
Pisárčik M., Jampílek J., Lukáč M., Horáková R., Devínsky F., Bukovský M., Kalina M., Tkacz J., Opravil T. Silver Nanoparticles Stabilised by Cationic Gemini Surfactants with Variable Spacer Length. Molecules. 2017;22:1794. doi: 10.3390/molecules22101794. PubMed DOI PMC
Brycki B., Szulc A., Babkova M. Synthesis of Silver Nanoparticles with Gemini Surfactants as Efficient Capping and Stabilizing Agents. Appl. Sci. 2020;11:154. doi: 10.3390/app11010154. DOI
Pisárčik M., Lukáč M., Jampílek J., Bilka F., Bilková A., Pašková Ľ., Devínsky F., Horáková R., Opravil T. Silver Nanoparticles Stabilised with Cationic Single-Chain Surfactants. Structure-Physical Properties-Biological Activity Relationship Study. J. Mol. Liq. 2018;272:60–72. doi: 10.1016/j.molliq.2018.09.042. DOI
Pisárčik M., Lukáč M., Jampílek J., Bilka F., Bilková A., Pašková Ľ., Devínsky F., Horáková R., Opravil T. Phosphonium Surfactant Stabilised Silver Nanoparticles. Correlation of Surfactant Structure with Physical Properties and Biological Activity of Silver Nanoparticles. J. Mol. Liq. 2020;314:113683. doi: 10.1016/j.molliq.2020.113683. DOI
He S., Chen H., Guo Z., Wang B., Tang C., Feng Y. High-Concentration Silver Colloid Stabilized by a Cationic Gemini Surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2013;429:98–105. doi: 10.1016/j.colsurfa.2013.03.068. DOI
Cheng W., Dong S., Wang E. Studies of Electrochemical Quantized Capacitance Charging of Surface Ensembles of Silver Nanoparticles. Electrochem. Commun. 2002;4:412–416. doi: 10.1016/S1388-2481(02)00324-7. DOI
Jiang X.C., Chen W.M., Chen C.Y., Xiong S.X., Yu A.B. Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach. Nanoscale Res. Lett. 2010 doi: 10.1007/s11671-010-9780-1. PubMed DOI PMC
Lukáč M., Lacko I., Bukovský M., Kyselová Z., Karlovská J., Horváth B., Devínsky F. Synthesis and Antimicrobial Activity of a Series of Optically Active Quaternary Ammonium Salts Derived from Phenylalanine. Open Chem. 2010;8:194–201. doi: 10.2478/s11532-009-0126-8. DOI
Raspotnig G., Fauler G., Jantscher A., Windischhofer W., Schachl K., Leis H.J. Colorimetric Determination of Cell Numbers by Janus Green Staining. Anal. Biochem. 1999;275:74–83. doi: 10.1006/abio.1999.4309. PubMed DOI
Wang W., Gu B. Concentrated Dispersions: Theory, Experiments, and Applications. Oxford University Press; Oxford, UK: 2004. Preparation and Characterization of Silver Nanoparticles at High Concentrations; pp. 1–14. (ACS Symposium Series 878). Chapter 1.
Xu L., Wang Y.-Y., Huang J., Chen C.-Y., Wang Z.-X., Xie H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics. 2020;10:8996–9031. doi: 10.7150/thno.45413. PubMed DOI PMC
Epiotis N.D., Cherry W. On the Aromaticity of Phospholes and Arsoles. J. Am. Chem. Soc. 1976;98:4365–4370. doi: 10.1021/ja00431a003. DOI
Chesnut D.B., Quin L.D. The Important Role of the Phosphorus Lone Pair in Phosphole Aromaticity. Heteroat. Chem. 2007;18:754–758. doi: 10.1002/hc.20364. DOI
Yu H., Narusawa H., Itoh K., Oshi A., Yoshino N., Ohbu K., Shirakawa T., Fukada K., Fujii M., Kato T., et al. Hydrophilicity of Polar and Apolar Domains of Amphiphiles. J. Colloid Interface Sci. 2000;229:375–390. doi: 10.1006/jcis.2000.7032. PubMed DOI
Yu D., Huang X., Deng M., Lin Y., Jiang L., Huang J., Wang Y. Effects of Inorganic and Organic Salts on Aggregation Behavior of Cationic Gemini Surfactants. J. Phys. Chem. B. 2010;114:14955–14964. doi: 10.1021/jp106031d. PubMed DOI
Balgavý P., Devínsky F. Cut-off Effects in Biological Activities of Surfactants. Adv. Colloid Interface Sci. 1996;66:23–63. doi: 10.1016/0001-8686(96)00295-3. PubMed DOI
Zhang S., Ding S., Yu J., Chen X., Lei Q., Fang W. Antibacterial Activity, in Vitro Cytotoxicity, and Cell Cycle Arrest of Gemini Quaternary Ammonium Surfactants. Langmuir. 2015;31:12161–12169. doi: 10.1021/acs.langmuir.5b01430. PubMed DOI
Wypij M., Czarnecka J., Świecimska M., Dahm H., Rai M., Golinska P. Synthesis, Characterization and Evaluation of Antimicrobial and Cytotoxic Activities of Biogenic Silver Nanoparticles Synthesized from Streptomyces Xinghaiensis OF1 Strain. World J. Microbiol. Biotechnol. 2018;34 doi: 10.1007/s11274-017-2406-3. PubMed DOI PMC
Janowska S., Paneth A., Wujec M. Cytotoxic Properties of 1,3,4-Thiadiazole Derivatives—A Review. Molecules. 2020;25:4309. doi: 10.3390/molecules25184309. PubMed DOI PMC
Senff-Ribeiro A., Echevarria A., Silva E.F., Franco C.R.C., Veiga S.S., Oliveira M.B.M. Cytotoxic Effect of a New 1,3,4-Thiadiazolium Mesoionic Compound (MI-D) on Cell Lines of Human Melanoma. Br. J. Cancer. 2004;91:297–304. doi: 10.1038/sj.bjc.6601946. PubMed DOI PMC