Newborn screening for homocystinurias and methylation disorders: systematic review and proposed guidelines

. 2015 Nov ; 38 (6) : 1007-19. [epub] 20150312

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid25762406
Odkazy

PubMed 25762406
PubMed Central PMC4626539
DOI 10.1007/s10545-015-9830-z
PII: 10.1007/s10545-015-9830-z
Knihovny.cz E-zdroje

Newborn screening (NBS) is justified if early intervention is effective in a disorder generally not detected early in life on a clinical basis, and if sensitive and specific biochemical markers exist. Experience with NBS for homocystinurias and methylation disorders is limited. However, there is robust evidence for the success of early treatment with diet, betaine and/or pyridoxine for CBS deficiency and good evidence for the success of early betaine treatment in severe MTHFR deficiency. These conditions can be screened in dried blood spots by determining methionine (Met), methionine-to-phenylanine (Met/Phe) ratio, and total homocysteine (tHcy) as a second tier marker. Therefore, we recommend NBS for cystathionine beta-synthase and severe MTHFR deficiency. Weaker evidence is available for the disorders of intracellular cobalamin metabolism. Early treatment is clearly of advantage for patients with the late-onset cblC defect. In the early-onset type, survival and non-neurological symptoms improve but the effect on neurocognitive development is uncertain. The cblC defect can be screened by measuring propionylcarnitine, propionylcarnitine-to-acetylcarnitine ratio combined with the second tier markers methylmalonic acid and tHcy. For the cblE and cblG defects, evidence for the benefit of early treatment is weaker; and data on performance of Met, Met/Phe and tHcy even more limited. Individuals homozygous or compound heterozygous for MAT1A mutations may benefit from detection by NBS using Met, which on the other hand also detects asymptomatic heterozygotes. Clinical and laboratory data is insufficient to develop any recommendation on NBS for the cblD, cblF, cblJ defects, glycineN-methyltransferase-, S-adenosylhomocysteinehydrolase- and adenosine kinase deficiency.

Zobrazit více v PubMed

Abeling NG, van Gennip AH, Blom H, Wevers RA, Vreken P, van Tinteren HL, Bakker HD. Rapid diagnosis and methionine administration: basis for a favourable outcome in a patient with methylene tetrahydrofolate reductase deficiency. J Inherit Metab Dis. 1999;22:240–242. doi: 10.1023/A:1005509400481. PubMed DOI

Accinni R, Campolo J, Parolini M, et al. Newborn screening of homocystinuria: quantitative analysis of total homocyst(e)ine on dried blood spot by liquid chromatography with fluorimetric detection. J Chromatogr B Anal Technol Biomed Life Sci. 2003;785:219–226. doi: 10.1016/S1570-0232(02)00852-8. PubMed DOI

Adam S, Almeida SF, Weber EC. Dietary practices in pyridoxine non-responsive homocystinuria: a European survey. Mol Gen Metab. 2013;110:454–459. doi: 10.1016/j.ymgme.2013.10.003. PubMed DOI

Alfadhel M, Lillquist YP, Davis C, Junker AK, Stockler-Ipsiroglu S. Eighteen-year follow-up of a patient with cobalamin F disease (cblF): report and review. Am J Med Genet. 2011;155:2571–2577. doi: 10.1002/ajmg.a.34220. PubMed DOI

Alodaib AN, Carpenter K, Wiley V, Wotton T, Christodoulou J, Wilcken B. Homocysteine measurement in dried blood spot for neonatal detection of homocystinurias. JIMD Rep. 2012;5:1–6. doi: 10.1007/8904_2011_109. PubMed DOI PMC

Armour CM, Brebner A, Watkins D, Geraghty MT, Chan A, Rosenblatt DS. A patient with an inborn error of vitamin B12 metabolism (cblF) detected by newborn screening. Pediatrics. 2013;132:e257. doi: 10.1542/peds.2013-0105. PubMed DOI

Baric I. Inherited disorders in the conversion of methionine to homocysteine. J Inherit Metab Dis. 2009;32:459–471. doi: 10.1007/s10545-009-1146-4. PubMed DOI

Barić I, Ćuk M, Fumić K, Vugrek O, Allen RH, Glenn B, Maradin M, Pažanin L, Pogribny I, Radoš M, Sarnavka V, Schulze A, Stabler S, Wagner C, Zeisel SH, Mudd SH. S-Adenosylhomocysteine hydrolase deficiency: a second patient, the younger brother of the index patient, and outcomes during therapy. J Inherit Metab Dis. 2005;28:885–902. doi: 10.1007/s10545-005-0192-9. PubMed DOI PMC

Bártl J, Chrastina P, Krijt J, Hodík J, Pešková K, Kožich V. Simultaneous determination of cystathionine, total homocysteine, and methionine in dried blood spots by liquid chromatography/tandem mass spectrometry and its utility for the management of patients with homocystinuria. Clin Chim Acta. 2014;437:211–217. doi: 10.1016/j.cca.2014.07.028. PubMed DOI

Bjursell MK, Blom HJ, Cayuela JA, et al. Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet. 2011;89:507–515. doi: 10.1016/j.ajhg.2011.09.004. PubMed DOI PMC

Bowron A, Barton A, Scott J, Stansbie D. Blood spot homocysteine: a feasibility and stability study. Clin Chem. 2005;51:257–258. doi: 10.1373/clinchem.2004.041640. PubMed DOI

Buist NR, Glenn B, Vugrek O, Wagner C, Stabler S, Allen RH, Pogribny I, Schulze A, Zeisel SH, Baric I, Mudd SH. S-Adenosylhomocysteine hydrolase deficiency in a 26-year-old man. J Inherit Metab Dis. 2006;29:538–545. doi: 10.1007/s10545-006-0240-0. PubMed DOI PMC

Carrillo-Carrasco N, Chandler R, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentations, diagnosis and management. J Inherit Metab Dis. 2012;35:91–102. doi: 10.1007/s10545-011-9364-y. PubMed DOI PMC

Chace DH, Hillman SL, Millington DS, Kahler SG, Adam BW, Levy HL. Rapid diagnosis of homocystinuria and other hypermethioninemias from newborns’ blood spots by tandem mass spectrometry. Clin Chem. 1996;42:349–355. PubMed

Coelho D, Kim JC, Miousse IR, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44:1152–1155. doi: 10.1038/ng.2386. PubMed DOI

Couce ML, Bóveda MD, García-Jimémez C, et al. Clinical and metabolic findings in patients with methionine adenosyltransferase I/III deficiency detected by newborn screening. Mol Genet Metab. 2013;110:218–221. doi: 10.1016/j.ymgme.2013.08.003. PubMed DOI

Diekman EF, de Koning TJ, Verhoeven-Duif NM, Rovers MM, van Hasselt PM. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency. JAMA Neurol. 2014;71:188–194. doi: 10.1001/jamaneurol.2013.4915. PubMed DOI

Fattal-Valevski A, Bassan H, Korman SH, Lerman-Sagie T, Gutman A, Harel S. Methylenetetrahydrofolatereductase deficiency: importance of early diagnosis. J Child Neurol. 2000;15:539–543. doi: 10.1177/088307380001500808. PubMed DOI

Fischer S, Huemer M, Baumgartner M, et al. Clinical presentation and outcome in a series of 88 patients with the cblC defect. J Inherit Metab Dis. 2014;37:831–840. doi: 10.1007/s10545-014-9687-6. PubMed DOI

Fowler B. Genetic defects of folate and cobalamin metabolism. Eur J Pediatr. 1998;157(Suppl 2):S60–66. doi: 10.1007/PL00014306. PubMed DOI

Fowler B, Schutgens RB, Rosenblatt DS, Smit GP, Lindemans J. Folate-responsive homocystinuria and megaloblastic anaemia in a female patient with functional methionine synthase deficiency (cblE disease) J Inherit Metab Dis. 1997;20:731–741. doi: 10.1023/A:1005372730310. PubMed DOI

Fu X, Xu YK, Chan P, Pattengale PK. Simple, fast, and simultaneous detection of plasma total homocysteine, methylmalonic acid, methionine, and 2-methylcitric acid using liquid chromatography and mass spectrometry (LC/MS/MS) JIMD Rep. 2013;10:69–78. doi: 10.1007/8904_2012_205. PubMed DOI PMC

Gailus S, Suormala T, Malerczyk-Aktas AG, et al. A novel mutation in LMBRD1 causes the cblF defect of vitamin B(12) metabolism in a Turkish patient. J Inherit Metab Dis. 2010;33:17–24. doi: 10.1007/s10545-009-9032-7. PubMed DOI

Gan-Schreier H, Kebbewar M, Fang-Hoffmann J, et al. Newborn population screening for classic homocystinuria by determination of total homocysteine from Guthrie cards. J Pediatr. 2010;156:427–432. doi: 10.1016/j.jpeds.2009.09.054. PubMed DOI

Gaustadnes M, Ingerslev J, Rütiger N. Prevalence of congenital homocystinuria in Denmark. N Engl J Med. 1999;340:1513. doi: 10.1056/NEJM199905133401915. PubMed DOI

Grubbs R, Vugrek O, Deisch J, et al. S-Adenosylhomocysteine hydrolase deficiency: Two siblings with fetal hydrops and fatal outcomes. J Inherit Metab Dis. 2010;33:705–713. doi: 10.1007/s10545-010-9171-x. PubMed DOI

Hall PL, Marquardt G, McHugh DM, Currier RJ, Tang H, Stoway SD, Rinaldo P. Postanalytical tools improve performance of newborn screening by tandem mass spectrometry. Genet Med. 2014;16:889–895. doi: 10.1038/gim.2014.62. PubMed DOI PMC

Harding CO, Arnold G, Barness LA, Wolff JA, Rosenblatt DS. Functional methionine synthase deficiency due to cblG disorder: a report of two patients and a review. Am J Med Genet. 1997;71:384–390. doi: 10.1002/(SICI)1096-8628(19970905)71:4<384::AID-AJMG3>3.0.CO;2-U. PubMed DOI

Honzík T, Magner M, Krijt J, et al. Clinical picture of S-adenosylhomocysteine hydrolase deficiency resembles phosphomannomutase 2 deficiency. Mol Genet Metab. 2012;107:611–613. doi: 10.1016/j.ymgme.2012.08.014. PubMed DOI

Huemer M, Scholl-Bürgi S, Hadaya K, et al. Three new cases of late-onset cblC defect and review of the literature illustrating when to consider inborn errors of metabolism beyond infancy. Orphanet J Rare Dis. 2014;9:161. doi: 10.1186/s13023-014-0161-1. PubMed DOI PMC

Huemer M, Bürer C, Ješina P, et al. Clinical onset and course, response to treatment and outcome in 24 patients with the cblE or cblG remethylation defect complemented by genetic and in vitro enzyme study data. J Inherit Metab Dis. 2014 PubMed

Janosík M, Sokolová J, Janosíková B, Krijt J, Klatovská V, Kozich V. Birth prevalence of homocystinuria in Central Europe: frequency and pathogenicity of mutation c.1105C > T (p.R369C) in the cystathionine beta-synthase gene. J Pediatr. 2009;154:431–437. doi: 10.1016/j.jpeds.2008.09.015. PubMed DOI PMC

Jusufi J, Suormala T, Burda P, Fowler B, Froese DS, Baumgartner MR. Characterization of functional domains of the cblD (MMADHC) gene product. J Inherit Metab Dis. 2014;37:841–849. doi: 10.1007/s10545-014-9709-4. PubMed DOI

Kim JC, Lee NC, Hwu PW, et al. Late onset of symptoms in an atypical patient with the cblJ inborn error of vitamin B12 metabolism: diagnosis and novel mutation revealed by exome sequencing. Mol Genet Metab. 2012;107:664–668. doi: 10.1016/j.ymgme.2012.10.005. PubMed DOI

la Marca G, Malvagia S, Pasquini E, Innocenti M, Donati MA, Zammarchi E. Rapid 2nd-tier test for measurement of 3-OH-propionic and methylmalonic acids on dried blood spots: reducing the false-positive rate for propionylcarnitine during expanded newborn screening by liquid chromatography-tandem mass spectrometry. Clin Chem. 2007;53:1364–1369. doi: 10.1373/clinchem.2007.087775. PubMed DOI

Lawrance AK, Racine J, Deng L, Wang X, Lachapelle P, Rozen R. Complete deficiency of methylenetetrahydrofolate reductase in mice is associated with impaired retinal function and variable mortality, hematological profiles, and reproductive outcomes. J Inherit Metab Dis. 2011;34:147–157. doi: 10.1007/s10545-010-9127-1. PubMed DOI

Lerner-Ellis JP, Anastasio N, Liu J, et al. Spectrum of mutations in MMACHC, allelic expression, and evidence for genotype-phenotype correlations. Hum Mutat. 2009;30:1072–1081. doi: 10.1002/humu.21001. PubMed DOI

Magner M, Krupková L, Honzík T, Zeman J, Hyánek J, Kožich V. Vascular presentation of cystathionine beta-synthase deficiency in adulthood. J Inherit Metab Dis. 2011;34:33–37. doi: 10.1007/s10545-010-9146-y. PubMed DOI PMC

Marquardt G, Currier R, McHugh DM, et al. Enhanced interpretation of newborn screening results without analyte cutoff values. Genet Med. 2012;14:648–655. doi: 10.1038/gim.2012.2. PubMed DOI

Martinelli D, Deodato F, Dionisi-Vici C. Cobalamin C defect: natural history, pathophysiology, and treatment. J Inherit Metab Dis. 2011;34:127–135. doi: 10.1007/s10545-010-9161-z. PubMed DOI

Martins E, Marcão A, Bandeira A, Fonseca H, Nogueira C, Vilarinho L. Methionine adenosyltransferase I/III deficiency in Portugal: high frequency of a dominantly inherited form in a small area of douro high lands. JIMD Rep. 2012;6:107–112. doi: 10.1007/8904_2011_124. PubMed DOI PMC

McHugh D, Cameron CA, Abdenur JE, et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet Med. 2011;13:230–54. doi: 10.1097/GIM.0b013e31820d5e67. PubMed DOI

Miousse IR, Watkins D, Coelho D, et al. Clinical and molecular heterogeneity in patients with the cblD inborn error of cobalamin metabolism. J Pediatr. 2009;154:551–556. doi: 10.1016/j.jpeds.2008.10.043. PubMed DOI

Miousse IR, Watkins D, Rosenblatt DS. Novel splice site mutations and a large deletion in three patients with the cblF inborn error of vitamin B12 metabolism. Mol Genet Metab. 2011;102:505–507. doi: 10.1016/j.ymgme.2011.01.002. PubMed DOI

Mudd SH. Hypermethioninemias of genetic and non-genetic origin: a review. Am J Med Genet C: Semin Med Genet. 2011;157C:3–32. doi: 10.1002/ajmg.c.30293. PubMed DOI

Mudd SH, Skovby F, Levy HL, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1985;37:1–31. PubMed PMC

Müller P, Horneff G, Hennermann JB. A rare inborn error of intracellular processing of cobalamin presenting with microcephalus and megaloblastic anemia: a report of 3 children. Klin Padiatr. 2007;219:361–367. doi: 10.1055/s-2007-973067. PubMed DOI

Mulvihill A, Yap S, O’Keefe M, Howard PM, Naughten ER. Ocular findings among patients with late-diagnosed or poorly controlled homocystinuria compared with a screened, well-controlled population. JAAPOS. 2001;5:311–315. PubMed

Naughten ER, Yap S, Mayne PD. Newborn screening for homocystinuria: Irish and world experience. Eur J Pediatr. 1998;157(Suppl 2):S84–87. doi: 10.1007/PL00014310. PubMed DOI

Peterschmitt MJ, Simmons JR, Levy HL. Reduction of false negative results in screening of newborns for homocystinuria. N Engl J Med. 1999;341:1572–1576. doi: 10.1056/NEJM199911183412103. PubMed DOI

Refsum H, Fredriksen A, Meyer K, Ueland PM, Kase BF. Birth prevalence of homocystinuria. J Pediatr. 2004;144:830–832. PubMed

Rosenblatt DS, Aspler AL, Shevell MI, Pletcher BA, Fenton WA, Seashore MR. Clinical heterogeneity and prognosis in combined methylmalonic aciduria and homocystinuria (cblC) J Inherit Metab Dis. 1997;20:528–538. doi: 10.1023/A:1005353530303. PubMed DOI

Rutsch F, Gailus S, Miousse IR, et al. Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat Genet. 2009;41:234–239. doi: 10.1038/ng.294. PubMed DOI

Schiff M, Benoist JF, Tilea B, Royer N, Giraudier S, Ogier de Baulny H. Isolated remethylation disorders: do our treatments benefit patients? J Inherit Metab Dis. 2011;34:137–145. doi: 10.1007/s10545-010-9120-8. PubMed DOI

Scolamiero E, Villani GR, Ingenito L, et al. Maternal vitamin B12 deficiency detected in expanded newborn screening. Clin Biochem. 2014;47:312–317. doi: 10.1016/j.clinbiochem.2014.08.020. PubMed DOI

Shih VE, Axel SM, Tewksbury JC, Watkins D, Cooper BA, Rosenblatt DS. Defective lysosomal release of vitamin B12 (cb1F): a hereditary cobalamin metabolic disorder associated with sudden death. Am J Med Genet. 1989;33:555–563. doi: 10.1002/ajmg.1320330431. PubMed DOI

Skovby F, Gaustadnes M, Mudd SH. A revisit to the natural history of homocystinuria due to cystathionine beta-synthase deficiency. Mol Genet Metab. 2010;99:1–3. doi: 10.1016/j.ymgme.2009.09.009. PubMed DOI PMC

Stabler SP, Korson M, Jethva R, et al. Metabolic profiling of total homocysteine and related compounds in hyperhomocysteinemia: utility and limitations in diagnosing the cause of puzzling thrombophilia in a family. JIMD Rep. 2013;11:149–163. doi: 10.1007/8904_2013_235. PubMed DOI PMC

Suormala T, Baumgartner MR, Coelho D, et al. The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. J Biol Chem. 2004;279:42742–42749. doi: 10.1074/jbc.M407733200. PubMed DOI

Surtees R, Leonard J, Austin S. Association of demyelination with deficiency of cerebrospinal-fluid S-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet. 1991;338:1550–1554. doi: 10.1016/0140-6736(91)92373-A. PubMed DOI

Thomas MA, Rosenblatt DS (2005) Severe methylenetetrahydrofolate reductase deficiency. In: Ueland PM & Rozen R, editors. MTHFR polymorphisms and disease. Eureka; p.41–53.

Tortorelli S, Turgeon CT, Lim JS, et al. Two-tier approach to the newborn screening of methylenetetrahydrofolate reductase deficiency and other remethylation disorders with tandem mass spectrometry. J Pediatr. 2010;157:271–275. doi: 10.1016/j.jpeds.2010.02.027. PubMed DOI

Turgeon CT, Magera MJ, Cuthbert CD, et al. Determination of total homocysteine, methylmalonic acid, and 2-methylcitric acid in dried blood spots by tandem mass spectrometry. Clin Chem. 2010;56:1686–1695. doi: 10.1373/clinchem.2010.148957. PubMed DOI

Vilaseca MA, Vilarinho L, Zavadakova P, et al. CblE type of homocystinuria: mild clinical phenotype in two patients homozygous for a novel mutation in the MTRR gene. J Inherit Metab Dis. 2003;26:361–369. doi: 10.1023/A:1025159103257. PubMed DOI

Walter JH, Wraith JE, White FJ, Bridge C, Till J. Strategies for the treatment of cystathionine beta-synthase deficiency: the experience of the willink biochemical genetics unit over the past 30 years. Eur J Pediatr. 1998;57(Suppl 2):S71–76. doi: 10.1007/PL00014308. PubMed DOI

Watkins D, Rosenblatt DS. Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis. 2012;35:665–670. doi: 10.1007/s10545-011-9418-1. PubMed DOI

Weisfeld-Adams JD, Morrissey MA, Kirmse BM, et al. Newborn screening and early biochemical follow-up in combined methylmalonic aciduria and homocystinuria, cblC type, and utility of methionine as a secondary screening analyte. Mol Genet Metab. 2010;99:116–123. doi: 10.1016/j.ymgme.2009.09.008. PubMed DOI PMC

Weisfeld-Adams JD, Bender HA, Miley-Åkerstedt A, et al. Neurologic and neurodevelopmental phenotypes in young children with early-treated combined methylmalonic acidemia and homocystinuria, cobalamin C type. Mol Genet Metab. 2013;110:241–247. doi: 10.1016/j.ymgme.2013.07.018. PubMed DOI

Wilson JM, Jungner YG. Principles and practice of mass screening for disease. Public Health Pap World Health Organ. 1968;34:26–39.

Yap S, Naughten E. Homocystinuria due to cystathionine b-synthase deficiency in Ireland: 25 years experience of a newborn screened and treated population with reference to clinical outcome and biochemical control. J Inherit Metab Dis. 1998;21:738–747. doi: 10.1023/A:1005445132327. PubMed DOI

Yap S, Boers GH, Wilcken B, et al. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol. 2001;21:2080–2085. doi: 10.1161/hq1201.100225. PubMed DOI

Zavadakova P, Fowler B, Suormala T, et al. cblE Type of Homocystinuria due to methionine synthase reductase deficiency: functional correction by minigene expression. Hum Mutat. 2005;25:239–247. doi: 10.1002/humu.20131. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace