A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P50 HG004233
NHGRI NIH HHS - United States
RM1 HG010461
NHGRI NIH HHS - United States
HG004233
the National Human Genome Research Institute of the National Institutes of Health (NIH/NHGRI) Center of Excellence in Genomic Science (CEGS) Initiative - International
CIHR - Canada
PubMed
32000841
PubMed Central
PMC6993387
DOI
10.1186/s13073-020-0711-1
PII: 10.1186/s13073-020-0711-1
Knihovny.cz E-resources
- MeSH
- Cystathionine beta-Synthase genetics metabolism MeSH
- Phenotype MeSH
- Genetic Testing methods MeSH
- Genotype MeSH
- Homocystinuria genetics MeSH
- Humans MeSH
- Mutation, Missense * MeSH
- Saccharomyces cerevisiae Proteins genetics MeSH
- Saccharomyces cerevisiae MeSH
- Genetic Complementation Test methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cystathionine beta-Synthase MeSH
- Saccharomyces cerevisiae Proteins MeSH
BACKGROUND: For the majority of rare clinical missense variants, pathogenicity status cannot currently be classified. Classical homocystinuria, characterized by elevated homocysteine in plasma and urine, is caused by variants in the cystathionine beta-synthase (CBS) gene, most of which are rare. With early detection, existing therapies are highly effective. METHODS: Damaging CBS variants can be detected based on their failure to restore growth in yeast cells lacking the yeast ortholog CYS4. This assay has only been applied reactively, after first observing a variant in patients. Using saturation codon-mutagenesis, en masse growth selection, and sequencing, we generated a comprehensive, proactive map of CBS missense variant function. RESULTS: Our CBS variant effect map far exceeds the performance of computational predictors of disease variants. Map scores correlated strongly with both disease severity (Spearman's ϱ = 0.9) and human clinical response to vitamin B6 (ϱ = 0.93). CONCLUSIONS: We demonstrate that highly multiplexed cell-based assays can yield proactive maps of variant function and patient response to therapy, even for rare variants not previously seen in the clinic.
California Institute for Quantitative Biosciences University of California Berkeley CA 94720 USA
Center for Cancer Systems Biology Dana Farber Cancer Institute Boston MA 02215 USA
Department of Computer Science University of Toronto Toronto ON M5S 3E1 Canada
Department of Genetics Blavatnik Institute Harvard Medical School Boston MA 02115 USA
Department of Medical Biochemistry and Microbiology Uppsala University SE 75123 Uppsala Sweden
Department of Molecular and Cell Biology University of California Berkeley CA 94720 USA
Department of Molecular Genetics University of Toronto Toronto ON M5S 3E1 Canada
Lunenfeld Tanenbaum Research Institute Mount Sinai Hospital Toronto ON M5G 1X5 Canada
The Donnelly Centre University of Toronto Toronto ON M5S 3E1 Canada
See more in PubMed
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. 2019:531210. 10.1101/531210.
Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44:D862–D868. doi: 10.1093/nar/gkv1222. PubMed DOI PMC
Starita LM, Ahituv N, Dunham MJ, Kitzman JO, Roth FP, Seelig G, et al. Variant interpretation: functional assays to the rescue. Am J Hum Genet. 2017;101:315–325. doi: 10.1016/j.ajhg.2017.07.014. PubMed DOI PMC
Weile Jochen, Roth Frederick P. Multiplexed assays of variant effects contribute to a growing genotype–phenotype atlas. Human Genetics. 2018;137(9):665–678. doi: 10.1007/s00439-018-1916-x. PubMed DOI PMC
Sun S, Yang F, Tan G, Costanzo M, Oughtred R, Hirschman J, et al. An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res. 2016;26:670–680. doi: 10.1101/gr.192526.115. PubMed DOI PMC
Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D, et al. High-resolution mapping of protein sequence-function relationships. Nat Methods. 2010;7:741–746. doi: 10.1038/nmeth.1492. PubMed DOI PMC
Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. Nat Methods. 2014;11:801–807. doi: 10.1038/nmeth.3027. PubMed DOI PMC
Starita LM, Young DL, Islam M, Kitzman JO, Gullingsrud J, Hause RJ, et al. Massively parallel functional analysis of BRCA1 RING domain variants. Genetics. 2015;115:175802. PubMed PMC
Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R, Peloso G, et al. Prospective functional classification of all possible missense variants in PPARG. Nat Genet. 2016;48:1570–1575. doi: 10.1038/ng.3700. PubMed DOI PMC
Weile J, Sun S, Cote AG, Knapp J, Verby M, Mellor JC, et al. A framework for exhaustively mapping functional missense variants. Mol Syst Biol. 2017;13:957. doi: 10.15252/msb.20177908. PubMed DOI PMC
Yadav PK, Banerjee R. Detection of reaction intermediates during human cystathionine β-synthase-monitored turnover and H2S production. J Biol Chem. 2012;287:43464–43471. doi: 10.1074/jbc.M112.414722. PubMed DOI PMC
Singh S, Banerjee R. PLP-dependent H2S biogenesis. Biochim Biophys Acta BBA Proteins Proteomics. 1814;2011:1518–1527. PubMed PMC
Kabil O, Banerjee R. Redox biochemistry of hydrogen sulfide. J Biol Chem. 2010;285:21903–21907. doi: 10.1074/jbc.R110.128363. PubMed DOI PMC
Majtan T, Pey AL, Gimenez-Mascarell P, Martínez-Cruz LA, Szabo C, Kožich V, et al. In: Potential pharmacological chaperones for cystathionine beta-synthase-deficient homocystinuria. Ulloa-Aguirre A, Tao Y-X, et al., editors. Cham: Springer International Publishing; 2018. pp. 345–383. PubMed
Janošík M, Kery V, Gaustadnes M, Maclean KN, Kraus JP. Regulation of human cystathionine β-synthase by S-adenosyl-l-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry. 2001;40:10625–10633. doi: 10.1021/bi010711p. PubMed DOI
Ereño-Orbea J, Majtan T, Oyenarte I, Kraus JP, Martínez-Cruz LA. Structural basis of regulation and oligomerization of human cystathionine β-synthase, the central enzyme of transsulfuration. Proc Natl Acad Sci. 2013;110:E3790–E3799. doi: 10.1073/pnas.1313683110. PubMed DOI PMC
Hamosh A. Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2004;33:D514–D517. doi: 10.1093/nar/gki033. PubMed DOI PMC
Carson NAJ, Neill DW. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Arch Dis Child. 1962;37:505–513. doi: 10.1136/adc.37.195.505. PubMed DOI PMC
Mudd SH, Finkelstein JD, Irreverre F, Laster L. Homocystinuria: an enzymatic defect. Science. 1964;143:1443–1445. doi: 10.1126/science.143.3613.1443. PubMed DOI
Kožich V, Kraus JP. Screening for mutations by expressing patient cDNA segments in E. coli: homocystinuria due to cystathionine β-synthase deficiency. Hum Mutat. 1992;1:113–123. doi: 10.1002/humu.1380010206. PubMed DOI
Kraus JP, Kožich V, Janosik M. CBS mutation database [internet] 2016.
Kožich V, Sokolová J, Klatovská V, Krijt J, Janošík M, Jelínek K, et al. Cystathionine β-synthase mutations: effect of mutation topology on folding and activity. Hum Mutat. 2010;31:809–819. doi: 10.1002/humu.21273. PubMed DOI PMC
Hnízda A, Jurga V, Raková K, Kožich V. Cystathionine beta-synthase mutants exhibit changes in protein unfolding: conformational analysis of misfolded variants in crude cell extracts. J Inherit Metab Dis. 2012;35:469–477. doi: 10.1007/s10545-011-9407-4. PubMed DOI PMC
Hnízda A, Majtan T, Liu L, Pey AL, Carpenter JF, Kodíček M, et al. Conformational properties of nine purified cystathionine β-synthase mutants. Biochemistry. 2012;51:4755–4763. doi: 10.1021/bi300435e. PubMed DOI PMC
Kožich V, Kraus JP, Majtan T. Cystathionine β-synthase (CBS) deficiency: genetics. eLS [Internet]. American Cancer Society; 2018. p. 1–12. [cited 2019 Aug 8]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0005935.pub3. DOI
Urreizti R, Asteggiano C, Cozar M, Frank N, Vilaseca MA, Grinberg D, et al. Functional assays testing pathogenicity of 14 cystathionine-beta synthase mutations. Hum Mutat. 2006;27:211. doi: 10.1002/humu.9395. PubMed DOI
Kruger WD, Wang L, Jhee KH, Singh RH, Elsas LJ. Cystathionine β-synthase deficiency in Georgia (USA): correlation of clinical and biochemical phenotype with genotype. Hum Mutat. 2003;22:434–441. doi: 10.1002/humu.10290. PubMed DOI
Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NST, et al. Human gene mutation database (HGMD®): 2003 update. Hum Mutat. 2003;21:577–581. doi: 10.1002/humu.10212. PubMed DOI
Janošík M, Oliveriusová J, Janošíková B, Sokolová J, Kraus E, Kraus JP, et al. Impaired heme binding and aggregation of mutant cystathionine β-synthase subunits in homocystinuria. Am J Hum Genet. 2001;68:1506–1513. doi: 10.1086/320597. PubMed DOI PMC
Kopecká J, Krijt J, Raková K, Kožich V. Restoring assembly and activity of cystathionine β-synthase mutants by ligands and chemical chaperones. J Inherit Metab Dis. 2011;34:39–48. doi: 10.1007/s10545-010-9087-5. PubMed DOI PMC
Melenovská P, Kopecká J, Krijt J, Hnízda A, Raková K, Janošík M, et al. Chaperone therapy for homocystinuria: the rescue of CBS mutations by heme arginate. J Inherit Metab Dis. 2015;38:287–294. doi: 10.1007/s10545-014-9781-9. PubMed DOI
Katsushima F, Oliveriusova J, Sakamoto O, Ohura T, Kondo Y, Iinuma K, et al. Expression study of mutant cystathionine β-synthase found in Japanese patients with homocystinuria. Mol Genet Metab. 2006;87:323–328. doi: 10.1016/j.ymgme.2005.09.013. PubMed DOI
Gaustadnes M, Wilcken B, Oliveriusova J, McGill J, Fletcher J, Kraus JP, et al. The molecular basis of cystathionine β-synthase deficiency in Australian patients: genotype–phenotype correlations and response to treatment. Hum Mutat. 2002;20:117–126. doi: 10.1002/humu.10104. PubMed DOI
Morris AAM, Kožich V, Santra S, Andria G, Ben-Omran TIM, Chakrapani AB, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis. 2017;40:49–74. doi: 10.1007/s10545-016-9979-0. PubMed DOI PMC
Skovby F, Gaustadnes M, Mudd SH. A revisit to the natural history of homocystinuria due to cystathionine β-synthase deficiency. Mol Genet Metab. 2010;99:1–3. doi: 10.1016/j.ymgme.2009.09.009. PubMed DOI PMC
Magner M, Krupková L, Honzík T, Zeman J, Hyánek J, Kožich V. Vascular presentation of cystathionine beta-synthase deficiency in adulthood. J Inherit Metab Dis. 2011;34:33–37. doi: 10.1007/s10545-010-9146-y. PubMed DOI PMC
Moorthie S, Cameron L, Sagoo GS, Bonham JR, Burton H. Systematic review and meta-analysis to estimate the birth prevalence of five inherited metabolic diseases. J Inherit Metab Dis. 2014;37:889–898. doi: 10.1007/s10545-014-9729-0. PubMed DOI
Gaustadnes M, Ingerslev J, Rütiger N. Prevalence of congenital homocystinuria in Denmark. N Engl J Med. 1999;340:1513. doi: 10.1056/NEJM199905133401915. PubMed DOI
Refsum H, Fredriksen Å, Meyer K, Ueland PM, Kase BF. Birth prevalence of homocystinuria. J Pediatr. 2004;144:830–832. PubMed
Janošík M, Sokolová J, Janošíková B, Krijt J, Klatovská V, Kožich V. Birth prevalence of homocystinuria in Central Europe: frequency and pathogenicity of mutation c.1105C>T (p.R369C) in the cystathionine beta-synthase gene. J Pediatr. 2009;154:431–437. doi: 10.1016/j.jpeds.2008.09.015. PubMed DOI PMC
Gan-Schreier H, Kebbewar M, Fang-Hoffmann J, Wilrich J, Abdoh G, Ben-Omran T, et al. Newborn population screening for classic homocystinuria by determination of total homocysteine from Guthrie cards. J Pediatr. 2010;156:427–432. doi: 10.1016/j.jpeds.2009.09.054. PubMed DOI
Keller R, Chrastina P, Pavlíková M, Gouveia S, Ribes A, Kölker S, et al. Newborn screening for homocystinurias: recent recommendations versus current practice. J Inherit Metab Dis. 2019;42:128–139. doi: 10.1002/jimd.12034. PubMed DOI
Huemer M, Kožich V, Rinaldo P, Baumgartner MR, Merinero B, Pasquini E, et al. Newborn screening for homocystinurias and methylation disorders: systematic review and proposed guidelines. J Inherit Metab Dis. 2015;38:1007–1019. doi: 10.1007/s10545-015-9830-z. PubMed DOI PMC
Kruger WD, Cox DR. A yeast system for expression of human cystathionine beta-synthase: structural and functional conservation of the human and yeast genes. Proc Natl Acad Sci. 1994;91:6614–6618. doi: 10.1073/pnas.91.14.6614. PubMed DOI PMC
Kruger WD, Cox DR. A yeast assay for functional detection of mutations in the human cystathionine β-synthase gene. Hum Mol Genet. 1995;4:1155–1161. doi: 10.1093/hmg/4.7.1155. PubMed DOI
Kim CE, Gallagher PM, Guttormsen AB, Refsum H, Ueland PM, Ose L, et al. Functional modeling of vitamin responsiveness in yeast: a common pyridoxine-responsive cystathionine β-synthase mutation in homocystinuria. Hum Mol Genet. 1997;6:2213–2221. doi: 10.1093/hmg/6.13.2213. PubMed DOI
Shan X, Kruger WD. Correction of disease-causing CBS mutations in yeast. Nat Genet. 1998;19:91–93. doi: 10.1038/ng0598-91. PubMed DOI
Chen X, Wang L, Fazlieva R, Kruger WD. Contrasting behaviors of mutant cystathionine beta-synthase enzymes associated with pyridoxine response. Hum Mutat. 2006;27:474–482. doi: 10.1002/humu.20320. PubMed DOI
Mayfield JA, Davies MW, Dimster-Denk D, Pleskac N, McCarthy S, Boydston EA, et al. Surrogate genetics and metabolic profiling for characterization of human disease alleles. Genetics. 2012;190:1309–1323. doi: 10.1534/genetics.111.137471. PubMed DOI PMC
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285:901–906. doi: 10.1126/science.285.5429.901. PubMed DOI
Yang X, Boehm JS, Yang X, Salehi-Ashtiani K, Hao T, Shen Y, et al. A public genome-scale lentiviral expression library of human ORFs. Nat Methods. 2011;8:659–661. doi: 10.1038/nmeth.1638. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Sun S. tileseq_package [Internet]. 2018. Available from: https://bitbucket.org/rothlabto/tileseq_package.
Wu Y, Weile J, Cote AG, Sun S, Knapp J, Verby M, et al. A web application and service for imputing and visualizing missense variant effect maps. Bioinformatics. 2019; [cited 2019 Aug 8]; Available from: https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btz012/5288774. PubMed DOI PMC
Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–1232. doi: 10.1214/aos/1013203451. DOI
Chen T, Guestrin C. Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min – KDD 16. 2016. XGBoost: a scalable tree boosting system; pp. 785–794.
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248. PubMed DOI PMC
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7:e46688. doi: 10.1371/journal.pone.0046688. PubMed DOI PMC
Wei Q, Wang L, Wang Q, Kruger WD, Dunbrack RL. Testing computational prediction of missense mutation phenotypes: functional characterization of 204 mutations of human cystathionine beta synthase. Proteins Struct Funct Bioinforma. 2010;78:2058–2074. PubMed PMC
Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics. 2001;17:509–519. doi: 10.1093/bioinformatics/17.6.509. PubMed DOI
Oliveriusová J, Kery V, Maclean KN, Kraus JP. Deletion mutagenesis of human cystathionine β-synthase: impact on activity, oligomeric status, and S-adenosylmethionine regulation. J Biol Chem. 2002;277:48386–48394. doi: 10.1074/jbc.M207087200. PubMed DOI
Alcaide P, Krijt J, Ruiz-Sala P, Ješina P, Ugarte M, Kožich V, et al. Enzymatic diagnosis of homocystinuria by determination of cystathionine-ß-synthase activity in plasma using LC-MS/MS. Clin Chim Acta. 2015;438:261–265. doi: 10.1016/j.cca.2014.09.009. PubMed DOI
Kacser H, Burns JA. The molecular basis of dominance. Genetics. 1981;97:639–666. PubMed PMC
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–315. doi: 10.1038/ng.2892. PubMed DOI PMC
Al-Dewik N, Ali A, Mahmoud Y, Shahbeck N, Ali R, Mahmoud L, et al. Natural history, with clinical, biochemical, and molecular characterization of classical homocystinuria in the Qatari population. J Inherit Metab Dis. 2019;42:818–830. doi: 10.1002/jimd.12099. PubMed DOI
Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet. 2018;50:874–882. doi: 10.1038/s41588-018-0122-z. PubMed DOI PMC
Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004;50:3–32. doi: 10.1373/clinchem.2003.021634. PubMed DOI
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31:3784–3788. doi: 10.1093/nar/gkg563. PubMed DOI PMC
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy - ENZYME [Internet]. [cited 2019 Aug 9]. Available from: https://enzyme.expasy.org/.
Nelson MR, Wegmann D, Ehm MG, Kessner D, St. Jean P, Verzilli C, et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science. 2012;337:100–104. doi: 10.1126/science.1217876. PubMed DOI PMC
Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–69. doi: 10.1126/science.1219240. PubMed DOI PMC
Recent therapeutic approaches to cystathionine beta-synthase-deficient homocystinuria
Shifting landscapes of human MTHFR missense-variant effects