• This record comes from PubMed

A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase

. 2020 Jan 30 ; 12 (1) : 13. [epub] 20200130

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
P50 HG004233 NHGRI NIH HHS - United States
RM1 HG010461 NHGRI NIH HHS - United States
HG004233 the National Human Genome Research Institute of the National Institutes of Health (NIH/NHGRI) Center of Excellence in Genomic Science (CEGS) Initiative - International
CIHR - Canada

Links

PubMed 32000841
PubMed Central PMC6993387
DOI 10.1186/s13073-020-0711-1
PII: 10.1186/s13073-020-0711-1
Knihovny.cz E-resources

BACKGROUND: For the majority of rare clinical missense variants, pathogenicity status cannot currently be classified. Classical homocystinuria, characterized by elevated homocysteine in plasma and urine, is caused by variants in the cystathionine beta-synthase (CBS) gene, most of which are rare. With early detection, existing therapies are highly effective. METHODS: Damaging CBS variants can be detected based on their failure to restore growth in yeast cells lacking the yeast ortholog CYS4. This assay has only been applied reactively, after first observing a variant in patients. Using saturation codon-mutagenesis, en masse growth selection, and sequencing, we generated a comprehensive, proactive map of CBS missense variant function. RESULTS: Our CBS variant effect map far exceeds the performance of computational predictors of disease variants. Map scores correlated strongly with both disease severity (Spearman's ϱ = 0.9) and human clinical response to vitamin B6 (ϱ = 0.93). CONCLUSIONS: We demonstrate that highly multiplexed cell-based assays can yield proactive maps of variant function and patient response to therapy, even for rare variants not previously seen in the clinic.

See more in PubMed

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. 2019:531210. 10.1101/531210.

Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44:D862–D868. doi: 10.1093/nar/gkv1222. PubMed DOI PMC

Starita LM, Ahituv N, Dunham MJ, Kitzman JO, Roth FP, Seelig G, et al. Variant interpretation: functional assays to the rescue. Am J Hum Genet. 2017;101:315–325. doi: 10.1016/j.ajhg.2017.07.014. PubMed DOI PMC

Weile Jochen, Roth Frederick P. Multiplexed assays of variant effects contribute to a growing genotype–phenotype atlas. Human Genetics. 2018;137(9):665–678. doi: 10.1007/s00439-018-1916-x. PubMed DOI PMC

Sun S, Yang F, Tan G, Costanzo M, Oughtred R, Hirschman J, et al. An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res. 2016;26:670–680. doi: 10.1101/gr.192526.115. PubMed DOI PMC

Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D, et al. High-resolution mapping of protein sequence-function relationships. Nat Methods. 2010;7:741–746. doi: 10.1038/nmeth.1492. PubMed DOI PMC

Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. Nat Methods. 2014;11:801–807. doi: 10.1038/nmeth.3027. PubMed DOI PMC

Starita LM, Young DL, Islam M, Kitzman JO, Gullingsrud J, Hause RJ, et al. Massively parallel functional analysis of BRCA1 RING domain variants. Genetics. 2015;115:175802. PubMed PMC

Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R, Peloso G, et al. Prospective functional classification of all possible missense variants in PPARG. Nat Genet. 2016;48:1570–1575. doi: 10.1038/ng.3700. PubMed DOI PMC

Weile J, Sun S, Cote AG, Knapp J, Verby M, Mellor JC, et al. A framework for exhaustively mapping functional missense variants. Mol Syst Biol. 2017;13:957. doi: 10.15252/msb.20177908. PubMed DOI PMC

Yadav PK, Banerjee R. Detection of reaction intermediates during human cystathionine β-synthase-monitored turnover and H2S production. J Biol Chem. 2012;287:43464–43471. doi: 10.1074/jbc.M112.414722. PubMed DOI PMC

Singh S, Banerjee R. PLP-dependent H2S biogenesis. Biochim Biophys Acta BBA Proteins Proteomics. 1814;2011:1518–1527. PubMed PMC

Kabil O, Banerjee R. Redox biochemistry of hydrogen sulfide. J Biol Chem. 2010;285:21903–21907. doi: 10.1074/jbc.R110.128363. PubMed DOI PMC

Majtan T, Pey AL, Gimenez-Mascarell P, Martínez-Cruz LA, Szabo C, Kožich V, et al. In: Potential pharmacological chaperones for cystathionine beta-synthase-deficient homocystinuria. Ulloa-Aguirre A, Tao Y-X, et al., editors. Cham: Springer International Publishing; 2018. pp. 345–383. PubMed

Janošík M, Kery V, Gaustadnes M, Maclean KN, Kraus JP. Regulation of human cystathionine β-synthase by S-adenosyl-l-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry. 2001;40:10625–10633. doi: 10.1021/bi010711p. PubMed DOI

Ereño-Orbea J, Majtan T, Oyenarte I, Kraus JP, Martínez-Cruz LA. Structural basis of regulation and oligomerization of human cystathionine β-synthase, the central enzyme of transsulfuration. Proc Natl Acad Sci. 2013;110:E3790–E3799. doi: 10.1073/pnas.1313683110. PubMed DOI PMC

Hamosh A. Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2004;33:D514–D517. doi: 10.1093/nar/gki033. PubMed DOI PMC

Carson NAJ, Neill DW. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Arch Dis Child. 1962;37:505–513. doi: 10.1136/adc.37.195.505. PubMed DOI PMC

Mudd SH, Finkelstein JD, Irreverre F, Laster L. Homocystinuria: an enzymatic defect. Science. 1964;143:1443–1445. doi: 10.1126/science.143.3613.1443. PubMed DOI

Kožich V, Kraus JP. Screening for mutations by expressing patient cDNA segments in E. coli: homocystinuria due to cystathionine β-synthase deficiency. Hum Mutat. 1992;1:113–123. doi: 10.1002/humu.1380010206. PubMed DOI

Kraus JP, Kožich V, Janosik M. CBS mutation database [internet] 2016.

Kožich V, Sokolová J, Klatovská V, Krijt J, Janošík M, Jelínek K, et al. Cystathionine β-synthase mutations: effect of mutation topology on folding and activity. Hum Mutat. 2010;31:809–819. doi: 10.1002/humu.21273. PubMed DOI PMC

Hnízda A, Jurga V, Raková K, Kožich V. Cystathionine beta-synthase mutants exhibit changes in protein unfolding: conformational analysis of misfolded variants in crude cell extracts. J Inherit Metab Dis. 2012;35:469–477. doi: 10.1007/s10545-011-9407-4. PubMed DOI PMC

Hnízda A, Majtan T, Liu L, Pey AL, Carpenter JF, Kodíček M, et al. Conformational properties of nine purified cystathionine β-synthase mutants. Biochemistry. 2012;51:4755–4763. doi: 10.1021/bi300435e. PubMed DOI PMC

Kožich V, Kraus JP, Majtan T. Cystathionine β-synthase (CBS) deficiency: genetics. eLS [Internet]. American Cancer Society; 2018. p. 1–12. [cited 2019 Aug 8]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0005935.pub3. DOI

Urreizti R, Asteggiano C, Cozar M, Frank N, Vilaseca MA, Grinberg D, et al. Functional assays testing pathogenicity of 14 cystathionine-beta synthase mutations. Hum Mutat. 2006;27:211. doi: 10.1002/humu.9395. PubMed DOI

Kruger WD, Wang L, Jhee KH, Singh RH, Elsas LJ. Cystathionine β-synthase deficiency in Georgia (USA): correlation of clinical and biochemical phenotype with genotype. Hum Mutat. 2003;22:434–441. doi: 10.1002/humu.10290. PubMed DOI

Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NST, et al. Human gene mutation database (HGMD®): 2003 update. Hum Mutat. 2003;21:577–581. doi: 10.1002/humu.10212. PubMed DOI

Janošík M, Oliveriusová J, Janošíková B, Sokolová J, Kraus E, Kraus JP, et al. Impaired heme binding and aggregation of mutant cystathionine β-synthase subunits in homocystinuria. Am J Hum Genet. 2001;68:1506–1513. doi: 10.1086/320597. PubMed DOI PMC

Kopecká J, Krijt J, Raková K, Kožich V. Restoring assembly and activity of cystathionine β-synthase mutants by ligands and chemical chaperones. J Inherit Metab Dis. 2011;34:39–48. doi: 10.1007/s10545-010-9087-5. PubMed DOI PMC

Melenovská P, Kopecká J, Krijt J, Hnízda A, Raková K, Janošík M, et al. Chaperone therapy for homocystinuria: the rescue of CBS mutations by heme arginate. J Inherit Metab Dis. 2015;38:287–294. doi: 10.1007/s10545-014-9781-9. PubMed DOI

Katsushima F, Oliveriusova J, Sakamoto O, Ohura T, Kondo Y, Iinuma K, et al. Expression study of mutant cystathionine β-synthase found in Japanese patients with homocystinuria. Mol Genet Metab. 2006;87:323–328. doi: 10.1016/j.ymgme.2005.09.013. PubMed DOI

Gaustadnes M, Wilcken B, Oliveriusova J, McGill J, Fletcher J, Kraus JP, et al. The molecular basis of cystathionine β-synthase deficiency in Australian patients: genotype–phenotype correlations and response to treatment. Hum Mutat. 2002;20:117–126. doi: 10.1002/humu.10104. PubMed DOI

Morris AAM, Kožich V, Santra S, Andria G, Ben-Omran TIM, Chakrapani AB, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis. 2017;40:49–74. doi: 10.1007/s10545-016-9979-0. PubMed DOI PMC

Skovby F, Gaustadnes M, Mudd SH. A revisit to the natural history of homocystinuria due to cystathionine β-synthase deficiency. Mol Genet Metab. 2010;99:1–3. doi: 10.1016/j.ymgme.2009.09.009. PubMed DOI PMC

Magner M, Krupková L, Honzík T, Zeman J, Hyánek J, Kožich V. Vascular presentation of cystathionine beta-synthase deficiency in adulthood. J Inherit Metab Dis. 2011;34:33–37. doi: 10.1007/s10545-010-9146-y. PubMed DOI PMC

Moorthie S, Cameron L, Sagoo GS, Bonham JR, Burton H. Systematic review and meta-analysis to estimate the birth prevalence of five inherited metabolic diseases. J Inherit Metab Dis. 2014;37:889–898. doi: 10.1007/s10545-014-9729-0. PubMed DOI

Gaustadnes M, Ingerslev J, Rütiger N. Prevalence of congenital homocystinuria in Denmark. N Engl J Med. 1999;340:1513. doi: 10.1056/NEJM199905133401915. PubMed DOI

Refsum H, Fredriksen Å, Meyer K, Ueland PM, Kase BF. Birth prevalence of homocystinuria. J Pediatr. 2004;144:830–832. PubMed

Janošík M, Sokolová J, Janošíková B, Krijt J, Klatovská V, Kožich V. Birth prevalence of homocystinuria in Central Europe: frequency and pathogenicity of mutation c.1105C>T (p.R369C) in the cystathionine beta-synthase gene. J Pediatr. 2009;154:431–437. doi: 10.1016/j.jpeds.2008.09.015. PubMed DOI PMC

Gan-Schreier H, Kebbewar M, Fang-Hoffmann J, Wilrich J, Abdoh G, Ben-Omran T, et al. Newborn population screening for classic homocystinuria by determination of total homocysteine from Guthrie cards. J Pediatr. 2010;156:427–432. doi: 10.1016/j.jpeds.2009.09.054. PubMed DOI

Keller R, Chrastina P, Pavlíková M, Gouveia S, Ribes A, Kölker S, et al. Newborn screening for homocystinurias: recent recommendations versus current practice. J Inherit Metab Dis. 2019;42:128–139. doi: 10.1002/jimd.12034. PubMed DOI

Huemer M, Kožich V, Rinaldo P, Baumgartner MR, Merinero B, Pasquini E, et al. Newborn screening for homocystinurias and methylation disorders: systematic review and proposed guidelines. J Inherit Metab Dis. 2015;38:1007–1019. doi: 10.1007/s10545-015-9830-z. PubMed DOI PMC

Kruger WD, Cox DR. A yeast system for expression of human cystathionine beta-synthase: structural and functional conservation of the human and yeast genes. Proc Natl Acad Sci. 1994;91:6614–6618. doi: 10.1073/pnas.91.14.6614. PubMed DOI PMC

Kruger WD, Cox DR. A yeast assay for functional detection of mutations in the human cystathionine β-synthase gene. Hum Mol Genet. 1995;4:1155–1161. doi: 10.1093/hmg/4.7.1155. PubMed DOI

Kim CE, Gallagher PM, Guttormsen AB, Refsum H, Ueland PM, Ose L, et al. Functional modeling of vitamin responsiveness in yeast: a common pyridoxine-responsive cystathionine β-synthase mutation in homocystinuria. Hum Mol Genet. 1997;6:2213–2221. doi: 10.1093/hmg/6.13.2213. PubMed DOI

Shan X, Kruger WD. Correction of disease-causing CBS mutations in yeast. Nat Genet. 1998;19:91–93. doi: 10.1038/ng0598-91. PubMed DOI

Chen X, Wang L, Fazlieva R, Kruger WD. Contrasting behaviors of mutant cystathionine beta-synthase enzymes associated with pyridoxine response. Hum Mutat. 2006;27:474–482. doi: 10.1002/humu.20320. PubMed DOI

Mayfield JA, Davies MW, Dimster-Denk D, Pleskac N, McCarthy S, Boydston EA, et al. Surrogate genetics and metabolic profiling for characterization of human disease alleles. Genetics. 2012;190:1309–1323. doi: 10.1534/genetics.111.137471. PubMed DOI PMC

Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285:901–906. doi: 10.1126/science.285.5429.901. PubMed DOI

Yang X, Boehm JS, Yang X, Salehi-Ashtiani K, Hao T, Shen Y, et al. A public genome-scale lentiviral expression library of human ORFs. Nat Methods. 2011;8:659–661. doi: 10.1038/nmeth.1638. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Sun S. tileseq_package [Internet]. 2018. Available from: https://bitbucket.org/rothlabto/tileseq_package.

Wu Y, Weile J, Cote AG, Sun S, Knapp J, Verby M, et al. A web application and service for imputing and visualizing missense variant effect maps. Bioinformatics. 2019; [cited 2019 Aug 8]; Available from: https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btz012/5288774. PubMed DOI PMC

Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–1232. doi: 10.1214/aos/1013203451. DOI

Chen T, Guestrin C. Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min – KDD 16. 2016. XGBoost: a scalable tree boosting system; pp. 785–794.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248. PubMed DOI PMC

Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7:e46688. doi: 10.1371/journal.pone.0046688. PubMed DOI PMC

Wei Q, Wang L, Wang Q, Kruger WD, Dunbrack RL. Testing computational prediction of missense mutation phenotypes: functional characterization of 204 mutations of human cystathionine beta synthase. Proteins Struct Funct Bioinforma. 2010;78:2058–2074. PubMed PMC

Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics. 2001;17:509–519. doi: 10.1093/bioinformatics/17.6.509. PubMed DOI

Oliveriusová J, Kery V, Maclean KN, Kraus JP. Deletion mutagenesis of human cystathionine β-synthase: impact on activity, oligomeric status, and S-adenosylmethionine regulation. J Biol Chem. 2002;277:48386–48394. doi: 10.1074/jbc.M207087200. PubMed DOI

Alcaide P, Krijt J, Ruiz-Sala P, Ješina P, Ugarte M, Kožich V, et al. Enzymatic diagnosis of homocystinuria by determination of cystathionine-ß-synthase activity in plasma using LC-MS/MS. Clin Chim Acta. 2015;438:261–265. doi: 10.1016/j.cca.2014.09.009. PubMed DOI

Kacser H, Burns JA. The molecular basis of dominance. Genetics. 1981;97:639–666. PubMed PMC

Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–315. doi: 10.1038/ng.2892. PubMed DOI PMC

Al-Dewik N, Ali A, Mahmoud Y, Shahbeck N, Ali R, Mahmoud L, et al. Natural history, with clinical, biochemical, and molecular characterization of classical homocystinuria in the Qatari population. J Inherit Metab Dis. 2019;42:818–830. doi: 10.1002/jimd.12099. PubMed DOI

Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet. 2018;50:874–882. doi: 10.1038/s41588-018-0122-z. PubMed DOI PMC

Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004;50:3–32. doi: 10.1373/clinchem.2003.021634. PubMed DOI

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31:3784–3788. doi: 10.1093/nar/gkg563. PubMed DOI PMC

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy - ENZYME [Internet]. [cited 2019 Aug 9]. Available from: https://enzyme.expasy.org/.

Nelson MR, Wegmann D, Ehm MG, Kessner D, St. Jean P, Verzilli C, et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science. 2012;337:100–104. doi: 10.1126/science.1217876. PubMed DOI PMC

Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–69. doi: 10.1126/science.1219240. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...