Chaperone therapy for homocystinuria: the rescue of CBS mutations by heme arginate

. 2015 Mar ; 38 (2) : 287-94. [epub] 20141021

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25331909

Classical homocystinuria is caused by mutations in the cystathionine β-synthase (CBS) gene. Previous experiments in bacterial and yeast cells showed that many mutant CBS enzymes misfold and that chemical chaperones enable proper folding of a number of mutations. In the present study, we tested the extent of misfolding of 27 CBS mutations previously tested in E. coli under the more folding-permissive conditions of mammalian CHO-K1 cells and the ability of chaperones to rescue the conformation of these mutations. Expression of mutations in mammalian cells increased the median activity 16-fold and the amount of tetramers 3.2-fold compared with expression in bacteria. Subsequently, we tested the responses of seven selected mutations to three compounds with chaperone-like activity. Aminooxyacetic acid and 4-phenylbutyric acid exhibited only a weak effect. In contrast, heme arginate substantially increased the formation of mutant CBS protein tetramers (up to sixfold) and rescued catalytic activity (up to ninefold) of five out of seven mutations (p.A114V, p.K102N, p.R125Q, p.R266K, and p.R369C). The greatest effect of heme arginate was observed for the mutation p.R125Q, which is non-responsive to in vivo treatment with vitamin B(6). Moreover, the heme responsiveness of the p.R125Q mutation was confirmed in fibroblasts derived from a patient homozygous for this genetic variant. Based on these data, we propose that a distinct group of heme-responsive CBS mutations may exist and that the heme pocket of CBS may become an important target for designing novel therapies for homocystinuria.

Zobrazit více v PubMed

J Biol Chem. 2008 Dec 12;283(50):34588-95 PubMed

Genetics. 2012 Apr;190(4):1309-23 PubMed

Med J Aust. 1972 Jun 3;1(23):1193-5 PubMed

Metabolism. 1985 Dec;34(12):1115-21 PubMed

J Inherit Metab Dis. 2011 Feb;34(1):39-48 PubMed

Mol Genet Metab. 2008 Jul;94(3):368-74 PubMed

Mol Genet Metab. 2004 Sep-Oct;83(1-2):150-6 PubMed

J Inherit Metab Dis. 2014 Jul;37(4):505-23 PubMed

Mini Rev Med Chem. 2008 Aug;8(9):901-11 PubMed

Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1796-801 PubMed

Best Pract Res Clin Gastroenterol. 2005 Apr;19(2):235-49 PubMed

Br J Clin Pharmacol. 1986 Sep;22(3):331-5 PubMed

Hum Mutat. 1999;13(5):362-75 PubMed

Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3790-9 PubMed

Arch Dis Child. 1963 Oct;38:425-36 PubMed

J Am Chem Soc. 2009 Sep 9;131(35):12809-16 PubMed

Biochemistry. 2002 Apr 9;41(14):4649-54 PubMed

J Inherit Metab Dis. 2012 May;35(3):469-77 PubMed

J Biol Chem. 2010 May 21;285(21):15866-73 PubMed

N Engl J Med. 1983 Aug 25;309(8):448-53 PubMed

J Biol Chem. 1994 Oct 14;269(41):25283-8 PubMed

FEBS Lett. 2004 Nov 19;577(3):507-11 PubMed

Am J Hum Genet. 2001 Jun;68(6):1506-13 PubMed

Hum Mutat. 2002 Aug;20(2):117-26 PubMed

Hum Mutat. 2006 May;27(5):474-82 PubMed

Mol Genet Metab. 2007 Aug;91(4):335-42 PubMed

Hum Mutat. 2010 Jul;31(7):809-19 PubMed

Biochemistry. 2012 Aug 14;51(32):6360-70 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...