Restoring assembly and activity of cystathionine β-synthase mutants by ligands and chemical chaperones
Language English Country United States Media print-electronic
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
Grant support
Wellcome Trust - United Kingdom
PubMed
20490928
PubMed Central
PMC3026675
DOI
10.1007/s10545-010-9087-5
Knihovny.cz E-resources
- MeSH
- Alleles MeSH
- Betaine pharmacology therapeutic use MeSH
- Cystathionine beta-Synthase chemistry drug effects genetics metabolism MeSH
- Escherichia coli metabolism MeSH
- Glycerol pharmacology MeSH
- Homocystinuria drug therapy genetics metabolism MeSH
- Polymorphism, Single Nucleotide physiology MeSH
- Protein Conformation drug effects MeSH
- Aminolevulinic Acid pharmacology therapeutic use MeSH
- Humans MeSH
- Ligands * MeSH
- Molecular Chaperones pharmacology therapeutic use MeSH
- Protein Multimerization drug effects MeSH
- Mutant Proteins chemistry drug effects metabolism MeSH
- Protein Folding drug effects MeSH
- Taurine pharmacology therapeutic use MeSH
- Protein Binding MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Betaine MeSH
- Cystathionine beta-Synthase MeSH
- Glycerol MeSH
- Aminolevulinic Acid MeSH
- Ligands * MeSH
- Molecular Chaperones MeSH
- Mutant Proteins MeSH
- Taurine MeSH
Misfolding and aggregation of mutant enzymes have been proposed to play role in the pathogenesis of homocystinuria due to cystathionine β-synthase (CBS) deficiency. Chemical chaperones have been recently shown to facilitate proper assembly of several CBS mutants. To asses the number of patients that may respond to chaperone therapy, we examined the effect of selected CBS ligands and osmolytes on assembly and activity of 27 CBS mutants that represent 70% of known CBS alleles. The mutant enzymes were expressed in a bacterial system, and their properties were assessed by native Western blotting and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assay, respectively. We studied the chaperoning activity of δ-aminolevulinic acid (δ-ALA)-a heme precursor-and of three osmolytes betaine, 2-aminoethanesulfonic acid (taurine), and glycerol. Fourteen mutants responded by at least 30% increase in the amount of correctly assembled tetramers and enzymatic activity to the coexpressional presence of either 0.5 mM δ-ALA, 100 mM betaine, and/or 750 mM glycerol. Eight of these mutants (p.R266K, p.P49L, p.R125Q, p.K102N, p.R369C, p.V180A, p.P78R, p.S466L) were rescuable by all of these three substances. Four mutants showed increased formation of tetramers that was not accompanied by changes in activity. Topology of mutations appeared to determine the chaperone responsiveness, as 11 of 14 solvent-exposed mutations were substantially more responsive than three of 13 buried mutations. This study identified chaperone-responsive mutants that represent 56 of 713 known patient-derived CBS alleles and may serve as a basis for exploring pharmacological approaches aimed at correcting misfolding in homocystinuria.
See more in PubMed
Agorogiannis EI, Agorogiannis GI, Papadimitriou A, Hadjigeorgiou GM. Protein misfolding in neurodegenerative diseases. Neuropathol Appl Neurobiol. 2004;30(3):215–224. doi: 10.1111/j.1365-2990.2004.00558.x. PubMed DOI
Arakawa T, Ejima D, Kita Y, Tsumoto K (2006) Small molecule pharmacological chaperones: From thermodynamic stabilization to pharmaceutical drugs. Biochim Biophys Acta 64(11):1677–1687 PubMed
Bolen DW, Baskakov IV. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol. 2001;310(5):955–963. doi: 10.1006/jmbi.2001.4819. PubMed DOI
Brown CR, Hong-Brown LQ, Biwersi J, Verkman AS, Welch WJ. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones. 1996;1(2):117–125. doi: 10.1379/1466-1268(1996)001<0117:CCCTMP>2.3.CO;2. PubMed DOI PMC
Caldas T, Demont-Caulet N, Ghazi A, Richarme G. Thermoprotection by glycine betaine and choline. Microbiology. 1999;145(Pt 9):2543–2548. PubMed
Chalmers RA, Lawson AM. Organic acids in man. London: Chapman and Hall Ltd.; 1982.
Gaustadnes M, Ingerslev J, Rutiger N. Prevalence of congenital homocystinuria in Denmark. N Engl J Med. 1999;340(19):1513. doi: 10.1056/NEJM199905133401915. PubMed DOI
Gekko K, Timasheff SN. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981;20(16):4667–4676. doi: 10.1021/bi00519a023. PubMed DOI
Hayden MR, Tyagi SC, Kerklo MM, Nicolls MR. Type 2 diabetes mellitus as a conformational disease. Jop. 2005;6(4):287–302. PubMed
Holm PI, Ueland PM, Kvalheim G, Lien EA. Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem. 2003;49(2):286–294. doi: 10.1373/49.2.286. PubMed DOI
Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;72(1):101–163. PubMed
Janosik M, Kery V, Gaustandes M, Maclean KN, Kraus JP. Regulation of human cystathionine beta-synthase by S-adenosyl-L-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry. 2001;40(35):10625–10633. doi: 10.1021/bi010711p. PubMed DOI
Janosik M, Oliveriusova J, Janosikova B, Sokoova J, Kraus E, Kraus JP, Kožich V. Impaired heme binding and aggregation of mutant cystathionine beta-synthase subunits in homocystinuria. Am J Hum Genet. 2001;68(6):1506–1513. doi: 10.1086/320597. PubMed DOI PMC
Janosik M, Sokolova J, Janosikova B, Krijt J, Klatovska V, Kožich V. Birth prevalence of homocystinuria in Central Europe: frequency and pathogenicity of mutation c.1105C>T (p.R369C) in the cystathionine beta-synthase gene. J Pediatr. 2009;154(3):431–437. doi: 10.1016/j.jpeds.2008.09.015. PubMed DOI PMC
Kery V, Bukovska G, Kraus JP. Transsulfuration depends on heme in addition to pyridoxal 5′-phosphate. Cystathionine beta-synthase is a heme protein. J Biol Chem. 1994;269(41):25283–25288. PubMed
Kery V, Elleder D, Kraus JP. Delta-aminolevulinate increases heme saturation and yield of human cystathionine beta-synthase expressed in Escherichia coli. Arch Biochem Biophys. 1995;316(1):24–29. doi: 10.1006/abbi.1995.1005. PubMed DOI
Kery V, Poneleit L, Kraus JP. Trypsin cleavage of human cystathionine beta-synthase into an evolutionarily conserved active core: structural and functional consequences. Arch Biochem Biophys. 1998;355(2):222–232. doi: 10.1006/abbi.1998.0723. PubMed DOI
Kim SH, Yan YB, Zhou HM. Role of osmolytes as chemical chaperones during the refolding of aminoacylase. Biochem Cell Biol. 2006;84(1):30–38. doi: 10.1139/O05-148. PubMed DOI
Kožich V, Kraus JP. Screening for mutations by expressing patient cDNA segments in E. coli: homocystinuria due to cystathionine beta-synthase deficiency. Hum Mutat. 1992;1(2):113–123. doi: 10.1002/humu.1380010206. PubMed DOI
Kožich V, Kraus JP. Homocysteine in health and disease. In: Carmel R, Jacobsen WJ, editors. Homocysteine in health and disease. Cambridge: Cambridge University Press; 2001. pp. 223–244.
Kožich V, Sokolová J, Klatovská V, Krijt J, Janošík M, Jelínek K, Kraus JP (2010) Cystathionine beta-synthase mutations: effect of mutation topology on folding and activity, Hum Mutat in press doi: 10.1002/humu.21273 PubMed PMC
Kraus J. Purification and properties of cystathionine beta-synthase from human liver. J Biol Chem. 1978;253(18):6523–6528. PubMed
Krijt J, Duta A, Kožich V. Determination of S-Adenosylmethionine and S-Adenosylhomocysteine by LC-MS/MS and evaluation of their stability in mice tissues. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(22):2061–2066. doi: 10.1016/j.jchromb.2009.05.039. PubMed DOI PMC
Lawson-Yuen A, Levy HL. The use of betaine in the treatment of elevated homocysteine. Mol Genet Metab. 2006;88(3):201–207. doi: 10.1016/j.ymgme.2006.02.004. PubMed DOI
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275. PubMed
Mafrici B. The contribution of low plasma taurine to clinical complications of Homocystinurea. Med Hypotheses. 2005;65(1):203–204. doi: 10.1016/j.mehy.2005.02.005. PubMed DOI
Majtan T, Singh LR, Wang L, Kruger WD, Kraus JP. Active cystathionine beta-synthase can be expressed in heme-free systems in the presence of metal-substituted porphyrins or a chemical chaperone. J Biol Chem. 2008;283(50):34588–34595. doi: 10.1074/jbc.M805928200. PubMed DOI PMC
McCabe ERB (2001) Disorders of glycerol metabolism. In: Scriver CR, Beaudet AL, Sly WS, Vale D, Childs B, Vogelstein B (eds) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, 1631–1652
Meier M, Janosik M, Kery V, Kraus JP, Burkhard P. Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBO J. 2001;20(15):3910–3916. doi: 10.1093/emboj/20.15.3910. PubMed DOI PMC
Meier M, Oliveriusova J, Kraus JP, Burkhard P. Structural insights into mutations of cystathionine beta-synthase. Biochim Biophys Acta. 2003;1647(1–2):206–213. PubMed
Meng F, Park Y, Zhou H. Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase. Int J Biochem Cell Biol. 2001;33(7):701–709. doi: 10.1016/S1357-2725(01)00048-6. PubMed DOI
Mirkovic N, Marti-Renom MA, Weber BL, Sali A, Monteiro AN. Structure-based assessment of missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition. Cancer Res. 2004;64(11):3790–3797. doi: 10.1158/0008-5472.CAN-03-3009. PubMed DOI
Mishra R, Bhat R, Seckler R. Chemical chaperone-mediated protein folding: stabilization of P22 tailspike folding intermediates by glycerol. Biol Chem. 2007;388(8):797–804. doi: 10.1515/BC.2007.096. PubMed DOI
Mudd SH, Levy LH, Kraus JP (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Vale D, Childs B, Vogelstein B (eds), The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill. 1007–1056
Ojha S, Wu J, LoBrutto R, Banerjee R. Effects of heme ligand mutations including a pathogenic variant, H65R, on the properties of human cystathionine beta-synthase. Biochemistry. 2002;41(14):4649–4654. doi: 10.1021/bi011827o. PubMed DOI
Pastores GM, Sathe S. A chaperone-mediated approach to enzyme enhancement as a therapeutic option for the lysosomal storage disorders. Drugs R D. 2006;7(6):339–348. doi: 10.2165/00126839-200607060-00003. PubMed DOI
Perlmutter DH. Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr Res. 2002;52(6):832–836. PubMed
Perroud B, Le Rudulier D. Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol. 1985;161(1):393–401. PubMed PMC
Refsum H, Fredriksen A, Meyer K, Ueland PM, Kase BF. Birth prevalence of homocystinuria. J Pediatr. 2004;144(6):830–832. PubMed
Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem. 1996;271(2):635–638. doi: 10.1074/jbc.271.2.635. PubMed DOI
Schwahn BC, Hafner D, Hohlfeld T, Balkenhol N, Laryea MD, Wendel U. Pharmacokinetics of oral betaine in healthy subjects and patients with homocystinuria. Br J Clin Pharmacol. 2003;55(1):6–13. doi: 10.1046/j.1365-2125.2003.01717.x. PubMed DOI PMC
Shelanski ML, Gaskin F, Cantor CR. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973;70(3):765–768. doi: 10.1073/pnas.70.3.765. PubMed DOI PMC
Singh LR, Chen X, Kozich V, Kruger WD. Chemical chaperone rescue of mutant human cystathionine beta-synthase. Mol Genet Metab. 2007;91(4):335–342. doi: 10.1016/j.ymgme.2007.04.011. PubMed DOI PMC
Skovby F, Kraus JP, Rosenberg LE. Biosynthesis of human cystathionine beta-synthase in cultured fibroblasts. J Biol Chem. 1984;259(1):583–587. PubMed
Tamarappoo BK, Verkman AS. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest. 1998;101(10):2257–2267. doi: 10.1172/JCI2303. PubMed DOI PMC
Verkamp E, Backman VM, Bjornsson JM, Soll D, Eggertsson G. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli. J Bacteriol. 1993;175(5):1452–1456. PubMed PMC
Wittung-Stafshede P. Role of cofactors in protein folding. Acc Chem Res. 2002;35(4):201–208. doi: 10.1021/ar010106e. PubMed DOI
Recent therapeutic approaches to cystathionine beta-synthase-deficient homocystinuria
A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase
Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency
Chaperone therapy for homocystinuria: the rescue of CBS mutations by heme arginate
Conformational properties of nine purified cystathionine β-synthase mutants
Cystathionine beta-synthase mutations: effect of mutation topology on folding and activity