HITS-CLIP analysis of human ALKBH8 reveals interactions with fully processed substrate tRNAs and with specific noncoding RNAs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36192131
PubMed Central
PMC9670814
DOI
10.1261/rna.079421.122
PII: rna.079421.122
Knihovny.cz E-zdroje
- Klíčová slova
- ALKBH8, HITS-CLIP, Trm9, mcm5U, mcm5s2U, wobble uridine modification,
- MeSH
- AlkB homolog 8, tRNA methyltransferasa genetika MeSH
- antikodon MeSH
- ChiP sekvenování * MeSH
- lidé MeSH
- nekódující RNA genetika MeSH
- RNA transferová * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AlkB homolog 8, tRNA methyltransferasa MeSH
- ALKBH8 protein, human MeSH Prohlížeč
- antikodon MeSH
- nekódující RNA MeSH
- RNA transferová * MeSH
Transfer RNAs acquire a large plethora of chemical modifications. Among those, modifications of the anticodon loop play important roles in translational fidelity and tRNA stability. Four human wobble U-containing tRNAs obtain 5-methoxycarbonylmethyluridine (mcm5U34) or 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), which play a role in decoding. This mark involves a cascade of enzymatic activities. The last step is mediated by alkylation repair homolog 8 (ALKBH8). In this study, we performed a transcriptome-wide analysis of the repertoire of ALKBH8 RNA targets. Using a combination of HITS-CLIP and RIP-seq analyses, we uncover ALKBH8-bound RNAs. We show that ALKBH8 targets fully processed and CCA modified tRNAs. Our analyses uncovered the previously known set of wobble U-containing tRNAs. In addition, both our approaches revealed ALKBH8 binding to several other types of noncoding RNAs, in particular C/D box snoRNAs.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Medical University of Vienna Center for Anatomy and Cell Biology 1090 Vienna Austria
Zobrazit více v PubMed
Aas PA, Otterlei M, Falnes PØ, Vågbø CB, Skorpen F, Akbari M, Sundheim O, Bjørås M, Slupphaug G, Seeberg E, et al. 2003. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421: 859–863. 10.1038/nature01363 PubMed DOI
Alkatib S, Scharff LB, Rogalski M, Fleischmann TT, Matthes A, Seeger S, Schöttler MA, Ruf S, Bock R. 2012. The contributions of wobbling and superwobbling to the reading of the genetic code. PLoS Genet 8: e1003076. 10.1371/journal.pgen.1003076 PubMed DOI PMC
Andrews S. 2010. Fast:QC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Anreiter I, Mir Q, Simpson JT, Janga SC, Soller M. 2020. New twists in detecting mRNA modification dynamics. Trends Biotechnol 39: 72–89. 10.1016/j.tibtech.2020.06.002 PubMed DOI PMC
Ansmant I, Motorin Y, Massenet S, Grosjean H, Branlant C. 2001. Identification and characterization of the tRNA: Ψ31-synthase (Pus6p) of Saccharomyces cerevisiae. J Biol Chem 276: 34934–34940. 10.1074/jbc.M103131200 PubMed DOI
Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, Hosogane M, Sinclair WR, Nanan KK, Mandler MD, et al. 2018. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175: 1872–1886. 10.1016/j.cell.2018.10.030 PubMed DOI PMC
Auxilien S, Guérineau V, Szweykowska-Kulińska Z, Golinelli-Pimpaneau B. 2012. The human tRNA m5C methyltransferase Misu is multisite-specific. RNA Biol 9: 1331–1338. 10.4161/rna.22180 PubMed DOI PMC
Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. 2017. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res 45: 11356–11370. 10.1093/nar/gkx778 PubMed DOI PMC
Begley U, Sosa MS, Avivar-Valderas A, Patil A, Endres L, Estrada Y, Chan CTY, Su D, Dedon PC, Aguirre-Ghiso JA, et al. 2013. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. EMBO Mol Med 5: 366–383. 10.1002/emmm.201201161 PubMed DOI PMC
Boccaletto P, Machnicka MA, Purta E, Piątkowski P, Bagiński B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, et al. 2018. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46: D303–D307. 10.1093/nar/gkx1030 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Brzezicha B, Schmidt M, Makałowska I, Jarmołowski A, Pieńkowska J, Szweykowska-Kulińska Z. 2006. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNALeu(CAA). Nucleic Acids Res 34: 6034–6043. 10.1093/nar/gkl765 PubMed DOI PMC
Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FAP, Fabris D, Agris PF. 2011. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 39: D195–D201. 10.1093/nar/gkq1028 PubMed DOI PMC
Chen C, Huang B, Anderson JT, Byström AS. 2011. Unexpected accumulation of ncm5U and ncm5s2U in a trm9 mutant suggests an additional step in the synthesis of mcm5U and mcm5s2U. PLoS One 6: e20783. 10.1371/journal.pone.0020783 PubMed DOI PMC
Crick FHC. 1966. Codon—anticodon pairing: the wobble hypothesis. J Mol Biol 19: 548–555. 10.1016/S0022-2836(66)80022-0 PubMed DOI
Dauden MI, Kosinski J, Kolaj-Robin O, Desfosses A, Ori A, Faux C, Hoffmann NA, Onuma OF, Breunig KD, Beck M, et al. 2017. Architecture of the yeast Elongator complex. EMBO Rep 18: 264–279. 10.15252/embr.201643353 PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Drino A, Oberbauer V, Troger C, Janisiw E, Anrather D, Hartl M, Kaiser S, Kellner S, Schaefer MR. 2020. Production and purification of endogenously modified tRNA-derived small RNAs. RNA Biol 17: 1104–1115. 10.1080/15476286.2020.1733798 PubMed DOI PMC
Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. 2002. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci 99: 16660–16665. 10.1073/pnas.262589799 PubMed DOI PMC
Endres L, Begley U, Clark R, Gu C, Dziergowska A, Małkiewicz A, Melendez JA, Dedon PC, Begley TJ. 2015a. Alkbh8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS One 10: e0131335. 10.1371/journal.pone.0131335 PubMed DOI PMC
Endres L, Dedon PC, Begley TJ. 2015b. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol 12: 603–614. 10.1080/15476286.2015.1031947 PubMed DOI PMC
Feng S, Xu Z, Peng J, Zhang M. 2022. The AlkB family: potential prognostic biomarkers and therapeutic targets in glioblastoma. Front Oncol 12: 847821. 10.3389/fonc.2022.847821 PubMed DOI PMC
Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, George BM, Majzoub K, Villalta PW, Carette JE, et al. 2021. Mammalian Y RNAs are modified at discrete guanosine residues with N-glycans. Cell 184: 3109–3124. 10.1016/j.cell.2021.04.023 PubMed DOI PMC
Fu D, Brophy JAN, Chan CTY, Atmore KA, Begley U, Paules RS, Dedon PC, Begley TJ, Samson LD. 2010a. Human AlkB homolog ABH8 is a tRNA methyltransferase required for Wobble uridine modification and DNA damage survival. Mol Cell Biol 30: 2449–2459. 10.1128/MCB.01604-09 PubMed DOI PMC
Fu Y, Dai Q, Zhang W, Ren J, Pan T, He C. 2010b. The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the Wobble position of tRNA. Angew Chem Int Ed Engl 49: 8885–8888. 10.1002/anie.201001242 PubMed DOI PMC
Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, Cai Q, Ji D, Jin S-G, Niedernhofer LJ, et al. 2014. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc 136: 11582–11585. 10.1021/ja505305z PubMed DOI PMC
Gerken T, Girard CA, Tung Y-CL, Webby CJ, Saudek V, Hewitson KS, Yeo GSH, McDonough MA, Cunliffe S, McNeill LA, et al. 2007. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318: 1469–1472. 10.1126/science.1151710 PubMed DOI PMC
Glasser A-L, El Adlouni C, Keith G, Sochacka E, Malkiewicz A, Santos M, Tuite MF, Desgrès J. 1992. Presence and coding properties of 2′-O-methyl-5-carbamoylmethyluridine (ncm5Um) in the wobble position of the anticodon of tRNALeu (U*AA) from brewer's yeast. FEBS Lett 314: 381–385. 10.1016/0014-5793(92)81510-S PubMed DOI
Grosjean H, de Crécy-Lagard V, Marck C. 2010. Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584: 252–264. 10.1016/j.febslet.2009.11.052 PubMed DOI
Gu C, Ramos J, Begley U, Dedon PC, Fu D, Begley TJ. 2018. Phosphorylation of human TRM9L integrates multiple stress-signaling pathways for tumor growth suppression. Sci Adv 4: eaas9184. 10.1126/sciadv.aas9184 PubMed DOI PMC
Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–857. 10.1016/0092-8674(83)90117-4 PubMed DOI
Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM. 2012. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA 18: 1921–1933. 10.1261/rna.035287.112 PubMed DOI PMC
Guzzi N, Cieśla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, Pimková K, Sommarin MNE, Munita R, Lubas M, et al. 2018. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173: 1204–1216. 10.1016/j.cell.2018.03.008 PubMed DOI
Hampel A, Enger MD. 1973. Subcellular distribution of aminoacyl-transfer RNA synthetases in Chinese hamster ovary cell culture. J Mol Biol 79: 285–293. 10.1016/0022-2836(73)90006-5 PubMed DOI
Hedgcoth C, Hayenga K, Harrison M, Ortwerth BJ. 1984. Lysine tRNAs from rat liver: lysine tRNA sequences are highly conserved. Nucleic Acids Res 12: 2535–2541. 10.1093/nar/12.5.2535 PubMed DOI PMC
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Sing H, Glass CK. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38: 576–589. 10.1016/j.molcel.2010.05.004 PubMed DOI PMC
Holley CL, Li MW, Scruggs BS, Matkovich SJ, Ory DS, Schaffer JE. 2015. Cytosolic accumulation of small nucleolar RNAs (snoRNAs) is dynamically regulated by NADPH oxidase. J Biol Chem 290: 11741–11748. 10.1074/jbc.M115.637413 PubMed DOI PMC
Huang B. 2005. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11: 424–436. 10.1261/rna.7247705 PubMed DOI PMC
Huang B, Lu J, Bystrom AS. 2008. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14: 2183–2194. 10.1261/rna.1184108 PubMed DOI PMC
Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J, et al. 2013. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4: 255–261. 10.1016/j.celrep.2013.06.029 PubMed DOI PMC
Inagaki Y, Kojima A, Bessho Y, Hori H, Ohama T, Osawa S. 1995. Translation of synonymous codons in family boxes by Mycoplasma capricolum tRNAs with unmodified uridine or adenosine at the first anticodon position. J Mol Biol 251: 486–492. 10.1006/jmbi.1995.0450 PubMed DOI
Johansson MJO, Esberg A, Huang B, Bjork GR, Bystrom AS. 2008. Eukaryotic Wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28: 3301–3312. 10.1128/MCB.01542-07 PubMed DOI PMC
Kalhor HR, Clarke S. 2003. Novel methyltransferase for modified uridine residues at the Wobble position of tRNA. Mol Cell Biol 23: 9283–9292. 10.1128/MCB.23.24.9283-9292.2003 PubMed DOI PMC
Keith G, Desgrès J, Pochart P, Heyman T, Kuo K C, Gehrke C W. 1990. Eukaryotic tRNAsPro: primary structure of the anticodon loop; presence of 5-carbamoylmethyluridine or inosine as the first nucleoside of the anticodon. Biochim Biophys Acta 1049: 255–260. 10.1016/0167-4781(90)90095-J PubMed DOI
Kim J-H, Lane WS, Reinberg D. 2002. Human Elongator facilitates RNA polymerase II transcription through chromatin. Proc Natl Acad Sci 99: 1241–1246. 10.1073/pnas.251672198 PubMed DOI PMC
Kishore S, Gruber AR, Jedlinski DJ, Syed AP, Jorjani H, Zavolan M. 2013. Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome Biol 14: R45. 10.1186/gb-2013-14-5-r45 PubMed DOI PMC
Kobayashi T, Irie T, Yoshida M, Takeishi K, Ukita T. 1974. The primary structure of yeast glutamic acid tRNA specific to the GAA codon. Biochimica Biophys Acta 366: 168–181. 10.1016/0005-2787(74)90331-1 PubMed DOI
König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J. 2010. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17: 909–915. 10.1038/nsmb.1838 PubMed DOI PMC
Kuntzel B, Weissenbach J, Wolff RE, Tumaitis-Kennedy TD, Lane BG, Dirheimer G. 1975. Presence of the methylester of 5-carboxymethyl uridine in the wobble position of the anticodon of tRNAArgIII from brewer's yeast. Biochimie 57: 61–70. 10.1016/S0300-9084(75)80110-6 PubMed DOI
Leary DJ, Terns MP, Huang S. 2004. Components of U3 snoRNA-containing complexes shuttle between nuclei and the cytoplasm and differentially localize in nucleoli: implications for assembly and function. Mol Biol Cell 15: 281–293. 10.1091/mbc.e03-06-0363 PubMed DOI PMC
Leidel S, Pedrioli PGA, Bucher T, Brost R, Costanzo M, Schmidt A, Aebersold R, Boone C, Hofmann K, Peter M. 2009. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458: 228–232. 10.1038/nature07643 PubMed DOI
Leihne V, Kirpekar F, Vågbø CB, van den Born E, Krokan HE, Grini PE, Meza TJ, Falnes PØ. 2011. Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA. Nucleic Acids Res 39: 7688–7701. 10.1093/nar/gkr406 PubMed DOI PMC
Lemus-Diaz N, Ferreira RR, Bohnsack KE, Gruber J, Bohnsack MT. 2020. The human box C/D snoRNA U3 is a miRNA source and miR-U3 regulates expression of sortin nexin 27. Nucleic Acids Res 48: 8074–8089. 10.1093/nar/gkaa549 PubMed DOI PMC
Lentini JM, Ramos J, Fu D. 2018. Monitoring the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification in eukaryotic tRNAs via the γ-toxin endonuclease. RNA 24: 749–758. 10.1261/rna.065581.118 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Li J, Wang Y-N, Xu B-S, Liu Y-P, Zhou M, Long T, Li H, Dong H, Nie Y, Chen PR, et al. 2020. Intellectual disability-associated gene ftsj1 is responsible for 2′-O-methylation of specific tRNAs. EMBO Rep 21: e50095. 10.15252/embr.202050095 PubMed DOI PMC
Lipowsky G, Bischoff FR, Izaurralde E, Kutay U, Schäfer S, Gross HJ, Beier H, Görlich D. 1999. Coordination of tRNA nuclear export with processing of tRNA. RNA 5: 539–549. 10.1017/S1355838299982134 PubMed DOI PMC
Lu J, Huang B, Esberg A, Johansson MJO, Byström AS. 2005. The Kluyveromyces lactis γ-toxin targets tRNA anticodons. RNA 11: 1648–1654. 10.1261/rna.2172105 PubMed DOI PMC
Maddirevula S, Alameer S, Ewida N, de Sousa MML, Bjørås M, Vågbø CB, Alkuraya FS. 2022. Insight into ALKBH8-related intellectual developmental disability based on the first pathogenic missense variant. Hum Genet 141: 209–215. 10.1007/s00439-021-02391-z PubMed DOI
Monies D, Vågbø CB, Al-Owain M, Alhomaidi S, Alkuraya FS. 2019. Recessive truncating mutations in ALKBH8 cause intellectual disability and severe impairment of Wobble uridine modification. Am J Hum Genet 104: 1202–1209. 10.1016/j.ajhg.2019.03.026 PubMed DOI PMC
Nakai Y, Nakai M, Hayashi H. 2008. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J Biol Chem 283: 27469–27476. 10.1074/jbc.M804043200 PubMed DOI
Noma A, Sakaguchi Y, Suzuki T. 2009. Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res 37: 1335–1352. 10.1093/nar/gkn1023 PubMed DOI PMC
Ohira T, Suzuki T. 2011. Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast. Proc Natl Acad Sci 108: 10502–10507. 10.1073/pnas.1105645108 PubMed DOI PMC
Ohshio I, Kawakami R, Tsukada Y, Nakajima K, Kitae K, Shimanoe T, Saigo Y, Hase H, Ueda Y, Jingushi K, et al. 2016. ALKBH8 promotes bladder cancer growth and progression through regulating the expression of survivin. Biochem Biophys Res Commun 477: 413–418. 10.1016/j.bbrc.2016.06.084 PubMed DOI
Pastore C, Topalidou I, Forouhar F, Yan AC, Levy M, Hunt JF. 2012. Crystal structure and RNA binding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8) an enzyme catalyzing tRNA hypermodification. J Biol Chem 287: 2130–2143. 10.1074/jbc.M111.286187 PubMed DOI PMC
Pintard L. 2002. Trm7p catalyses the formation of two 2′-O-methylriboses in yeast tRNA anticodon loop. EMBO J 21: 1811–1820. 10.1093/emboj/21.7.1811 PubMed DOI PMC
Pokholok DK, Hannett NM, Young RA. 2002. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol Cell 9: 799–809. 10.1016/S1097-2765(02)00502-6 PubMed DOI
Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Raba M, Limburg K, Burghagen M, Katze JR, Simsek M, Heckman JE, Rajbhandary UL, Gross HJ. 1979. Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. Eur J Biochem 97: 305–318. 10.1111/j.1432-1033.1979.tb13115.x PubMed DOI
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T. 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44: W160–W165. 10.1093/nar/gkw257 PubMed DOI PMC
Randerath E, Gupta RC, Chia L-LSY, Randerath K. 1979. Yeast tRNALeuUAG. Purification, properties and determination of the nucleotide sequence by radioactive derivative methods. Eur J Biochem 93: 79–94. 10.1111/j.1432-1033.1979.tb12797.x PubMed DOI
Rogalski M, Karcher D, Bock R. 2008. Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15: 192–198. 10.1038/nsmb.1370 PubMed DOI
Rossmanith W, Tullo A, Potuschak T, Karwan R, Sbisà E. 1995. Human mitochondrial tRNA processing. J Biol Chem 270: 12885–12891. 10.1074/jbc.270.21.12885 PubMed DOI
Saad AK, Marafi D, Mitani T, Du H, Rafat K, Fatih JM, Jhangiani SN, Coban-Akdemir Z, Baylor-Hopkins Center for Mendelian Genomics, Gibbs RA, et al. 2021. Neurodevelopmental disorder in an Egyptian family with a biallelic ALKBH8 variant. Am J Med Genet A 185: 1288–1293. 10.1002/ajmg.a.62100 PubMed DOI PMC
Safra M, Nir R, Farouq D, Vainberg Slutskin I, Schwartz S. 2017. TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res 27: 393–406. 10.1101/gr.207613.116 PubMed DOI PMC
Schaffrath R, Leidel SA. 2017. Wobble uridine modifications–a reason to live, a reason to die? RNA Biol 14: 1209–1222. 10.1080/15476286.2017.1295204 PubMed DOI PMC
Schiffer S, Rösch S, Marchfelder A. 2002. Assigning a function to a conserved group of proteins: the tRNA 3′-processing enzymes. EMBO J 21: 2769–2777. 10.1093/emboj/21.11.2769 PubMed DOI PMC
Selvadurai K, Wang P, Seimetz J, Huang RH. 2014. Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Nat Chem Biol 10: 810–812. 10.1038/nchembio.1610 PubMed DOI PMC
Shimada K, Nakamura M, Anai S, De Velasco M, Tanaka M, Tsujikawa K, Ouji Y, Konishi N. 2009. A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Cancer Res 69: 3157–3164. 10.1158/0008-5472.CAN-08-3530 PubMed DOI
Smith CJ, Teh HS, Ley AN, D'Obrenan P. 1973. The nucleotide sequences and coding properties of the major and minor lysine transfer ribonucleic acids from the haploid yeast Saccharomyces cerevisiae S288C. J Biol Chem 248: 4475–4485. 10.1016/S0021-9258(19)43792-7 PubMed DOI
Songe-Moller L, van den Born E, Leihne V, Vagbo CB, Kristoffersen T, Krokan HE, Kirpekar F, Falnes PO, Klungland A. 2010. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol 30: 1814–1827. 10.1128/MCB.01602-09 PubMed DOI PMC
Streit D, Shanmugam T, Garbelyanski A, Simm S, Schleiff E. 2020. The existence and localization of nuclear snoRNAs in Arabidopsis thaliana revisited. Plants (Basel) 9: 1016. 10.3390/plants9081016 PubMed DOI PMC
Szweykowska-Kulinska Z, Senger B, Keith G, Fasiolo F, Grosjean H. 1994. Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNAIle. EMBO J 13: 4636–4644. 10.1002/j.1460-2075.1994.tb06786.x PubMed DOI PMC
Thüring K, Schmid K, Keller P, Helm M. 2016. Analysis of RNA modifications by liquid chromatography–tandem mass spectrometry. Methods 107: 48–56. 10.1016/j.ymeth.2016.03.019 PubMed DOI
Tsujikawa K, Koike K, Kitae K, Shinkawa A, Arima H, Suzuki T, Tsuchiya M, Makino Y, Furukawa T, Konishi N, et al. 2007. Expression and sub-cellular localization of human ABH family molecules. J Cell Mol Med 11: 1105–1116. 10.1111/j.1582-4934.2007.00094.x PubMed DOI PMC
Ule J, Jensen K, Mele A, Darnell RB. 2005. CLIP: a method for identifying protein–RNA interaction sites in living cells. Methods 37: 376–386. 10.1016/j.ymeth.2005.07.018 PubMed DOI
Uren PJ, Bahrami-Samani E, Burns SC, Qiao M, Karginov FV, Hodges E, Hannon GJ, Sanford JR, Penalva LOF, Smith AD. 2012. Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28: 3013–3020. 10.1093/bioinformatics/bts569 PubMed DOI PMC
Ustianenko D, Pasulka J, Feketova Z, Bednarik L, Zigackova D, Fortova A, Zavolan M, Vanacova S. 2016. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J 35: 2179–2191. 10.15252/embj.201694857 PubMed DOI PMC
van den Born E, Vågbø CB, Songe-Møller L, Leihne V, Lien GF, Leszczynska G, Malkiewicz A, Krokan HE, Kirpekar F, Klungland A, et al. 2011. ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nat Commun 2: 172. 10.1038/ncomms1173 PubMed DOI
Vitali P, Kiss T. 2019. Cooperative 2′-O-methylation of the wobble cytidine of human elongator tRNAMet(CAT) by a nucleolar and a Cajal body-specific box C/D RNP. Genes Dev 33: 741–746. 10.1101/gad.326363.119 PubMed DOI PMC
Waqas A, Nayab A, Shaheen S, Abbas S, Latif M, Rafeeq MM, Al-Dhuayan IS, Alqosaibi AI, Alnamshan MM, Sain ZM, et al. 2022. Case report: biallelic variant in the tRNA methyltransferase domain of the AlkB homolog 8 causes syndromic intellectual disability. Front Genet 13: 878274. 10.3389/fgene.2022.878274 PubMed DOI PMC
Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE, Bohnsack MT. 2017. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep 18: 2004–2014. 10.15252/embr.201744940 PubMed DOI PMC
Wei Y-F, Carter KC, Wang R-P, Shell BK. 1996. Molecular cloning and functional analysis of a human cDNA encoding an Escherichia coli AlkB homolog, a protein involved in DNA alkylation damage repair. Nucleic Acids Res 24: 931–937. 10.1093/nar/24.5.931 PubMed DOI PMC
Wolfe CL, Hopper AK, Martin NC. 1996. Mechanisms leading to and the consequences of altering the normal distribution of ATP(CTP):tRNA nucleotidyltransferase in yeast. J Biol Chem 271: 4679–4686. 10.1074/jbc.271.9.4679 PubMed DOI
Yamamoto N, Yamaizumi Z, Yokoyama S, Miyazawa T, Nishimura S. 1985. Modified nucleoside, 5-carbamoylmethyluridine, located in the first position of the anticodon of yeast valine tRNA. J Biochem 97: 361–364. 10.1093/oxfordjournals.jbchem.a135061 PubMed DOI
Yip MCJ, Keszei AFA, Feng Q, Chu V, McKenna MJ, Shao S. 2019. Mechanism for recycling tRNAs on stalled ribosomes. Nat Struct Mol Biol 26: 343–349. 10.1038/s41594-019-0211-4 PubMed DOI
Yip MCJ, Savickas S, Gygi SP, Shao S. 2020. ELAC1 repairs tRNAs cleaved during ribosome-associated quality control. Cell Rep 30: 2106–2114.e5. 10.1016/j.celrep.2020.01.082 PubMed DOI PMC
Yokoyama S, Watanabe T, Murao K, Ishikura H, Yamaizumi Z, Nishimura S, Miyazawa T. 1985. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc Natl Acad Sci 82: 4905–4909. 10.1073/pnas.82.15.4905 PubMed DOI PMC
Yoshihisa T, Ohshima C, Yunoki-Esaki K, Endo T. 2007. Cytoplasmic splicing of tRNA in Saccharomyces cerevisiae. Genes Cells 12: 285–297. 10.1111/j.1365-2443.2007.01056.x PubMed DOI