ISG20L2: an RNA nuclease regulating T cell activation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PID2020-120412RB-I00
Ministerio de Ciencia e Innovación
HR17-00016
"la Caixa" Foundation
PubMed
37646974
PubMed Central
PMC10468436
DOI
10.1007/s00018-023-04925-2
PII: 10.1007/s00018-023-04925-2
Knihovny.cz E-zdroje
- Klíčová slova
- Exonuclease, ISG20L2, Immunoregulatory, T cell,
- MeSH
- aktivace lymfocytů * MeSH
- antigen prezentující buňky MeSH
- endonukleasy MeSH
- lidé MeSH
- mikro RNA * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endonukleasy MeSH
- mikro RNA * MeSH
ISG20L2, a 3' to 5' exoribonuclease previously associated with ribosome biogenesis, is identified here in activated T cells as an enzyme with a preferential affinity for uridylated miRNA substrates. This enzyme is upregulated in T lymphocytes upon TCR and IFN type I stimulation and appears to be involved in regulating T cell function. ISG20L2 silencing leads to an increased basal expression of CD69 and induces greater IL2 secretion. However, ISG20L2 absence impairs CD25 upregulation, CD3 synaptic accumulation and MTOC translocation towards the antigen-presenting cell during immune synapsis. Remarkably, ISG20L2 controls the expression of immunoregulatory molecules, such as AHR, NKG2D, CTLA-4, CD137, TIM-3, PD-L1 or PD-1, which show increased levels in ISG20L2 knockout T cells. The dysregulation observed in these key molecules for T cell responses support a role for this exonuclease as a novel RNA-based regulator of T cell function.
Bioinformatics Unit Centro Nacional de Investigaciones Cardiovasculares Madrid Spain
Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares Madrid Spain
Faculty of Medicine Masaryk University Kamenice 5 625 00 Brno Czech Republic
Instituto Investigación Sanitaria Princesa Madrid Spain
Zobrazit více v PubMed
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther. 2021 doi: 10.1038/S41392-021-00823-W. PubMed DOI PMC
Martín P, Blanco-Domínguez R, Sánchez-Díaz R. Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer. Cell Mol Immunol. 2021;18:919–935. doi: 10.1038/S41423-020-00586-4. PubMed DOI PMC
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Wu H, Neilson JR, Kumar P, et al. miRNA profiling of naïve, effector and memory CD8 T cells. PLoS One. 2007;2:e1020. doi: 10.1371/journal.pone.0001020. PubMed DOI PMC
Bronevetsky Y, Villarino AV, Eisley CJ, et al. T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J Exp Med. 2013;210:417–432. doi: 10.1084/jem.20111717. PubMed DOI PMC
Gutiérrez-Vázquez C, Enright AJ, Rodríguez-Galán A, et al. 3’ Uridylation controls mature microRNA turnover during CD4 T-cell activation. RNA. 2017;23:882–891. doi: 10.1261/rna.060095.116. PubMed DOI PMC
Rodríguez-Galán A, Dosil SG, Gómez MJ, et al. MiRNA post-transcriptional modification dynamics in T cell activation. iScience. 2021;24:102530. doi: 10.1016/j.isci.2021.102530. PubMed DOI PMC
Heo I, Joo C, Cho J, et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell. 2008;32:276–284. doi: 10.1016/j.molcel.2008.09.014. PubMed DOI
Heo I, Joo C, Kim Y-K, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009;138:696–708. doi: 10.1016/j.cell.2009.08.002. PubMed DOI
Thornton JE, Chang HM, Piskounova E, Gregory RI. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7) RNA. 2012;18:1875–1885. doi: 10.1261/rna.034538.112. PubMed DOI PMC
Ustianenko D, Hrossova D, Potesil D, et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA. 2013;19:1632–1638. doi: 10.1261/rna.040055.113. PubMed DOI PMC
Chang H-M, Triboulet R, Thornton JE, Gregory RI. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature. 2013;497:244–248. doi: 10.1038/nature12119. PubMed DOI PMC
Yang A, Shao TJ, Bofill-De Ros X, et al. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat Commun. 2020 doi: 10.1038/s41467-020-16533-w. PubMed DOI PMC
Hoefig KP, Rath N, Heinz GA, et al. Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat Struct Mol Biol. 2013;20:73–81. doi: 10.1038/nsmb.2450. PubMed DOI
Thomas MF, Abdul-Wajid S, Panduro M, et al. Eri1 regulates microRNA homeostasis and mouse lymphocyte development and antiviral function. Blood. 2012;120:130–142. doi: 10.1182/blood-2011-11-394072. PubMed DOI PMC
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Labun K, Montague TG, Gagnon JA, et al. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 2016;44:W272–W276. doi: 10.1093/nar/gkw398. PubMed DOI PMC
Labun K, Montague TG, Krause M, et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019;47:W171–W174. doi: 10.1093/nar/gkz365. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Bonzon-Kulichenko E, Pérez-Hernández D, Núñez E, et al. A robust method for quantitative high-throughput analysis of proteomes by 18 O labeling. Mol Cell Proteom. 2011;10:M110.003335. doi: 10.1074/mcp.M110.003335. PubMed DOI PMC
Martínez-Bartolomé S, Navarro P, Martín-Maroto F, et al. Properties of average score distributions of SEQUEST: the probability ratio method. Mol Cell Proteom. 2008;7:1135–1145. doi: 10.1074/mcp.M700239-MCP200. PubMed DOI
Bonzon-Kulichenko E, Garcia-Marques F, Trevisan-Herraz M, Vázquez J. Revisiting peptide identification by high-accuracy mass spectrometry: problems associated with the use of narrow mass precursor windows. J Proteome Res. 2015;14:700–710. doi: 10.1021/PR5007284/ASSET/IMAGES/LARGE/PR-2014-007284_0006.JPEG. PubMed DOI
Navarro P, Vazquez J. A refined method to calculate false discovery rates for peptide identification using decoy databases. J Proteome Res. 2009;8:1792–1796. doi: 10.1021/pr800362h. PubMed DOI
Vaňáčová Š, Wolf J, Martin G, et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol. 2005;3:0986–0997. doi: 10.1371/JOURNAL.PBIO.0030189. PubMed DOI PMC
Adachi H, Yu Y-T. Purification of radiolabeled RNA products using denaturing gel electrophoresis. Curr Protoc Mol Biol. 2014;105:Unit 4.20. doi: 10.1002/0471142727.mb0420s105. PubMed DOI PMC
Calabia-Linares C, Robles-Valero J, De La Fuente H, et al. Endosomal clathrin drives actin accumulation at the immunological synapse. J Cell Sci. 2011;124:820–830. doi: 10.1242/jcs.078832. PubMed DOI
Blas-Rus N, Bustos-Morán E, Sánchez-Madrid F, Martín-Cófreces NB. Methods in molecular biology. Totowa: Humana Press Inc.; 2017. Analysis of microtubules and microtubule-organizing center at the immune synapse; pp. 31–49. PubMed PMC
Sladitschek HL, Neveu PA. MXS-chaining: A highly efficient cloning platform for imaging and flow cytometry approaches in mammalian systems. PLoS One. 2015;10:e0124958. doi: 10.1371/journal.pone.0124958. PubMed DOI PMC
Ustianenko D, Pasulka J, Feketova Z, et al. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J. 2016;35:2179–2191. doi: 10.15252/embj.201694857. PubMed DOI PMC
Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47:946–953. doi: 10.1002/eji.201646837. PubMed DOI PMC
Travis A, Amsterdam A, Belanger C, Grosschedl R. LEF-1, a gene encoding a lymphoid-specific with protein, an HMG domain, regulates T-cell receptor α enhancer function. Genes Dev. 1991;5:880–894. doi: 10.1101/gad.5.5.880. PubMed DOI
Cherry LK, Li X, Schwab P, et al. RhoH is required to maintain the integrin LFA-1 in a nonadhesive state on lymphocytes. Nat Immunol. 2004;5:961–967. doi: 10.1038/ni1103. PubMed DOI
Baker CM, Comrie WA, Hyun Y-M, et al. Opposing roles for RhoH GTPase during T-cell migration and activation. Proc Natl Acad Sci USA. 2012;109:10474–10479. doi: 10.1073/pnas.1114214109. PubMed DOI PMC
Hara-Chikuma M, Chikuma S, Sugiyama Y, et al. Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med. 2012;209:1743–1752. doi: 10.1084/jem.20112398. PubMed DOI PMC
Couté Y, Kindbeiter K, Belin S, et al. ISG20L2, a novel vertebrate nucleolar exoribonuclease involved in ribosome biogenesis. Mol Cell Proteom. 2008;7:546–559. doi: 10.1074/mcp.M700510-MCP200. PubMed DOI
Zhou Z, Wang N, Woodson SE, et al. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology. 2011;409:175–188. doi: 10.1016/j.virol.2010.10.008. PubMed DOI PMC
Kim HP, Imbert J, Leonard WJ. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev. 2006;17:349–366. doi: 10.1016/j.cytogfr.2006.07.003. PubMed DOI
Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18:648–659. doi: 10.1038/s41577-018-0046-y. PubMed DOI
Lee H-W, Park S-J, Choi BK, et al. 4–1BB promotes the survival of CD8 + T lymphocytes by increasing expression of Bcl-x L and Bfl-1. J Immunol. 2002;169:4882–4888. doi: 10.4049/jimmunol.169.9.4882. PubMed DOI
Onnis A, Baldari CT. Orchestration of immunological synapse assembly by vesicular trafficking. Front Cell Dev Biol. 2019;7:110. doi: 10.3389/fcell.2019.00110. PubMed DOI PMC
Martín-Cófreces NB, Robles-Valero J, Cabrero JR, et al. MTOC translocation modulates IS formation and controls sustained T cell signaling. J Cell Biol. 2008;182:951–962. doi: 10.1083/jcb.200801014. PubMed DOI PMC
Bustos-Morán E, Blas-Rus N, Martín-Cófreces NB, Sánchez-Madrid F. International review of cell and molecular biology. Amsterdam: Elsevier Inc.; 2016. Orchestrating lymphocyte polarity in cognate immune cell-cell interactions; pp. 195–261. PubMed PMC
Valitutti S, Müller S, Salio M, Lanzavecchia A. Degradation of T cell receptor (TCR)–CD3-ζ complexes after antigenic stimulation. J Exp Med. 1997;185:1859. doi: 10.1084/JEM.185.10.1859. PubMed DOI PMC
Gabel HW, Ruvkun G, Struct Mol Biol Author manuscript N The exonuclease ERI-1 has a conserved dual role in 5.8S rRNA processing and RNAi. Nat Struct Mol Biol. 2008;15:531–533. doi: 10.1038/nsmb.1411. PubMed DOI PMC
Ansel KM, Pastor WA, Rath N, et al. Mouse Eri1 interacts with the ribosome and catalyzes 5.8S rRNA processing. Nat Struct Mol Biol. 2008;15:523. doi: 10.1038/NSMB.1417. PubMed DOI PMC
Matsushita K, Takeuchi O, Standley DM, et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature. 2009;458:1185–1190. doi: 10.1038/nature07924. PubMed DOI
Uehata T, Iwasaki H, Vandenbon A, et al. Malt1-induced cleavage of Regnase-1 in CD4+ helper T cells regulates immune activation. Cell. 2013;153:1036. doi: 10.1016/j.cell.2013.04.034. PubMed DOI
Wei J, Long L, Zheng W, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471–476. doi: 10.1038/s41586-019-1821-z. PubMed DOI PMC