Expression of Interferons Lambda 3 and 4 Induces Identical Response in Human Liver Cell Lines Depending Exclusively on Canonical Signaling
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IN 00023001
MH CZ - DRO Institute for Clinical and Experimental Medicine - IKEM
PubMed
33806448
PubMed Central
PMC7961969
DOI
10.3390/ijms22052560
PII: ijms22052560
Knihovny.cz E-zdroje
- Klíčová slova
- IFNLR1, IL10R2, interferon stimulated genes, knockout, transcriptome,
- MeSH
- buněčné linie MeSH
- buňky Hep G2 MeSH
- exprese genu MeSH
- genový knockout MeSH
- hepatocyty imunologie metabolismus MeSH
- interferonové regulační faktory genetika metabolismus MeSH
- interferony nedostatek genetika metabolismus MeSH
- interleukiny nedostatek genetika metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- receptor interleukinu-10 - beta-podjednotka nedostatek genetika metabolismus MeSH
- receptory interferonů nedostatek genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- signální transdukce MeSH
- transfekce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- IFNL4 protein, human MeSH Prohlížeč
- IFNLR1 protein, human MeSH Prohlížeč
- IL10RB protein, human MeSH Prohlížeč
- interferon-lambda, human MeSH Prohlížeč
- interferonové regulační faktory MeSH
- interferony MeSH
- interleukiny MeSH
- messenger RNA MeSH
- receptor interleukinu-10 - beta-podjednotka MeSH
- receptory interferonů MeSH
- rekombinantní proteiny MeSH
Lambda interferons mediate antiviral immunity by inducing interferon-stimulated genes (ISGs) in epithelial tissues. A common variant rs368234815TT/∆G creating functional gene from an IFNL4 pseudogene is associated with the expression of major ISGs in the liver but impaired clearance of hepatitis C. To explain this, we compared Halo-tagged and non-tagged IFNL3 and IFNL4 signaling in liver-derived cell lines. Transfection with non-tagged IFNL3, non-tagged IFNL4 and Halo-tagged IFNL4 led to a similar degree of JAK-STAT activation and ISG induction; however, the response to transfection with Halo-tagged IFNL3 was lower and delayed. Transfection with non-tagged IFNL3 or IFNL4 induced no transcriptome change in the cells lacking either IL10R2 or IFNLR1 receptor subunits. Cytosolic overexpression of signal peptide-lacking IFNL3 or IFNL4 in wild type cells did not interfere with JAK-STAT signaling triggered by interferons in the medium. Finally, expression profile changes induced by transfection with non-tagged IFNL3 and IFNL4 were highly similar. These data do not support the hypothesis about IFNL4-specific non-canonical signaling and point out that functional studies conducted with tagged interferons should be interpreted with caution.
Department of Internal Medicine 3 University Hospital RWTH Aachen 52062 Aachen Germany
Institute for Clinical and Experimental Medicine 14021 Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences 14220 Prague Czech Republic
Zobrazit více v PubMed
Donnelly R.P., Kotenko S.V. Interferon-lambda: A new addition to an old family. J. Interferon Cytokine Res. 2010;30:555–564. doi: 10.1089/jir.2010.0078. PubMed DOI PMC
Kotenko S.V., Gallagher G., Baurin V.V., Lewis-Antes A., Shen M., Shah N.K., Langer J.A., Sheikh F., Dickensheets H., Donnelly R.P. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 2003;4:69–77. doi: 10.1038/ni875. PubMed DOI
Sheppard P., Kindsvogel W., Xu W., Henderson K., Schlutsmeyer S., Whitmore T.E., Kuestner R., Garrigues U., Birks C., Roraback J., et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 2003;4:63–68. doi: 10.1038/ni873. PubMed DOI
Sommereyns C., Paul S., Staeheli P., Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 2008;4:e1000017. doi: 10.1371/journal.ppat.1000017. PubMed DOI PMC
Mordstein M., Neugebauer E., Ditt V., Jessen B., Rieger T., Falcone V., Sorgeloos F., Ehl S., Mayer D., Kochs G., et al. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J. Virol. 2010;84:5670–5677. doi: 10.1128/JVI.00272-10. PubMed DOI PMC
Ge D., Fellay J., Thompson A.J., Simon J.S., Shianna K.V., Urban T.J., Heinzen E.L., Qiu P., Bertelsen A.H., Muir A.J., et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461:399–401. doi: 10.1038/nature08309. PubMed DOI
Suppiah V., Moldovan M., Ahlenstiel G., Berg T., Weltman M., Abate M.L., Bassendine M., Spengler U., Dore G.J., Powell E., et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat. Genet. 2009;41:1100–1104. doi: 10.1038/ng.447. PubMed DOI
Tanaka Y., Nishida N., Sugiyama M., Kurosaki M., Matsuura K., Sakamoto N., Nakagawa M., Korenaga M., Hino K., Hige S., et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 2009;41:1105–1109. doi: 10.1038/ng.449. PubMed DOI
Thomas D.L., Thio C.L., Martin M.P., Qi Y., Ge D., O’Huigin C., Kidd J., Kidd K., Khakoo S.I., Alexander G., et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature. 2009;461:798–801. doi: 10.1038/nature08463. PubMed DOI PMC
Prokunina-Olsson L., Muchmore B., Tang W., Pfeiffer R.M., Park H., Dickensheets H., Hergott D., Porter-Gill P., Mumy A., Kohaar I., et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat. Genet. 2013;45:164–171. doi: 10.1038/ng.2521. PubMed DOI PMC
Honda M., Sakai A., Yamashita T., Nakamoto Y., Mizukoshi E., Sakai Y., Yamashita T., Nakamura M., Shirasaki T., Horimoto K., et al. Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C. Gastroenterology. 2010;139:499–509. doi: 10.1053/j.gastro.2010.04.049. PubMed DOI
Urban T.J., Thompson A.J., Bradrick S.S., Fellay J., Schuppan D., Cronin K.D., Hong L., McKenzie A., Patel K., Shianna K.V., et al. IL28B genotype is associated with differential expression of intrahepatic interferon-stimulated genes in patients with chronic hepatitis C. Hepatology. 2010;52:1888–1896. doi: 10.1002/hep.23912. PubMed DOI PMC
Sheahan T., Imanaka N., Marukian S., Dorner M., Liu P., Ploss A., Rice C.M. Interferon lambda alleles predict innate antiviral immune responses and hepatitis C virus permissiveness. Cell Host Microbe. 2014;15:190–202. doi: 10.1016/j.chom.2014.01.007. PubMed DOI PMC
Hamming O.J., Terczynska-Dyla E., Vieyres G., Dijkman R., Jorgensen S.E., Akhtar H., Siupka P., Pietschmann T., Thiel V., Hartmann R. Interferon lambda 4 signals via the IFNlambda receptor to regulate antiviral activity against HCV and coronaviruses. EMBO J. 2013;32:3055–3065. doi: 10.1038/emboj.2013.232. PubMed DOI PMC
Booth D., George J. Loss of function of the new interferon IFN-lambda4 may confer protection from hepatitis C. Nat. Genet. 2013;45:119–120. doi: 10.1038/ng.2537. PubMed DOI
Ray K. Hepatitis: New gene IFNL4 is associated with impaired clearance of HCV. Nat. Rev. Gastroenterol. Hepatol. 2013;10:63. doi: 10.1038/nrgastro.2013.7. PubMed DOI
O'Brien T.R., Prokunina-Olsson L., Donnelly R.P. IFN-lambda4: The paradoxical new member of the interferon lambda family. J. Interferon Cytokine Res. 2014;34:829–838. doi: 10.1089/jir.2013.0136. PubMed DOI PMC
Hong M., Schwerk J., Lim C., Kell A., Jarret A., Pangallo J., Loo Y.M., Liu S., Hagedorn C.H., Gale M., Jr., et al. Interferon lambda 4 expression is suppressed by the host during viral infection. J. Exp Med. 2016;213:2539–2552. doi: 10.1084/jem.20160437. PubMed DOI PMC
Lauber C., Vieyres G., Terczynska-Dyla E., Anggakusuma , Dijkman R., Gad H.H., Akhtar H., Geffers R., Vondran F.W., Thiel V., et al. Transcriptome analysis reveals a classical interferon signature induced by IFNlambda4 in human primary cells. Genes Immun. 2015;16:414–421. doi: 10.1038/gene.2015.23. PubMed DOI PMC
Zhou H., Mohlenberg M., Terczynska-Dyla E., Winther K.G., Hansen N.H., Vad-Nielsen J., Laloli L., Dijkman R., Nielsen A.L., Gad H.H., et al. The IFNL4 gene is a noncanonical interferon gene with a unique but evolutionarily conserved regulation. J. Virol. 2020;94:e01535. doi: 10.1128/JVI.01535-19. PubMed DOI PMC
Ansari M.A., Pedergnana V., IP C.L.C., Magri A., Von Delft A., Bonsall D., Chaturvedi N., Bartha I., Smith D., Nicholson G., et al. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat. Genet. 2017;49:666–673. doi: 10.1038/ng.3835. PubMed DOI PMC
Rosenberg B.R., Freije C.A., Imanaka N., Chen S.T., Eitson J.L., Caron R., Uhl S.A., Zeremski M., Talal A., Jacobson I.M., et al. Genetic Variation at IFNL4 influences extrahepatic interferon-stimulated gene expression in chronic HCV patients. J. Infect. Dis. 2017;217:650–655. doi: 10.1093/infdis/jix593. PubMed DOI PMC
Obajemu A.A., Rao N., Dilley K.A., Vargas J.M., Sheikh F., Donnelly R.P., Shabman R.S., Meissner E.G., Prokunina-Olsson L., Onabajo O.O. IFN-lambda4 attenuates antiviral responses by enhancing negative regulation of IFN signaling. J. Immunol. 2017;199:3808–3820. doi: 10.4049/jimmunol.1700807. PubMed DOI PMC
Kisseleva T., Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2020 doi: 10.1038/s41575-020-00372-7. PubMed DOI
Cubero F.J., Woitok M.M., Zoubek M.E., de Bruin A., Hatting M., Trautwein C. Disruption of the FasL/Fas axis protects against inflammation-derived tumorigenesis in chronic liver disease. Cell Death Dis. 2019;10:115. doi: 10.1038/s41419-019-1391-x. PubMed DOI PMC
Andreakos E., Zanoni I., Galani I.E. Lambda interferons come to light: Dual function cytokines mediating antiviral immunity and damage control. Curr. Opin. Immunol. 2019;56:67–75. doi: 10.1016/j.coi.2018.10.007. PubMed DOI PMC
Onabajo O.O., Porter-Gill P., Paquin A., Rao N., Liu L., Tang W., Brand N., Prokunina-Olsson L. Expression of interferon lambda 4 is associated with reduced proliferation and increased cell death in human hepatic cells. J. Interferon Cytokine Res. 2015;35:888–900. doi: 10.1089/jir.2014.0161. PubMed DOI PMC
Fonda I., Kenig M., Gaberc-Porekar V., Pristovaek P., Menart V. Attachment of histidine tags to recombinant tumor necrosis factor-alpha drastically changes its properties. Sci. World J. 2002;2:1312–1325. doi: 10.1100/tsw.2002.215. PubMed DOI PMC
Perron-Savard P., De Crescenzo G., Moual H.L. Dimerization and DNA binding of the Salmonella enterica PhoP response regulator are phosphorylation independent. Microbiology. 2005;151:3979–3987. doi: 10.1099/mic.0.28236-0. PubMed DOI
Chant A., Kraemer-Pecore C.M., Watkin R., Kneale G.G. Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. Protein Expr. Purif. 2005;39:152–159. doi: 10.1016/j.pep.2004.10.017. PubMed DOI
Smyth D.R., Mrozkiewicz M.K., McGrath W.J., Listwan P., Kobe B. Crystal structures of fusion proteins with large-affinity tags. Protein Sci. 2003;12:1313–1322. doi: 10.1110/ps.0243403. PubMed DOI PMC
de Vries E.G., de Hooge M.N., Gietema J.A., de Jong S. Correspondence re: C. G. Ferreira et al., Apoptosis: Target of cancer therapy. Clin. Cancer Res., 8: 2024-2034, 2002. Clin. Cancer Res. 2003;9:912. author reply 913. PubMed
Ke N., Landgraf D., Paulsson J., Berkmen M. Visualization of Periplasmic and Cytoplasmic Proteins with a Self-Labeling Protein Tag. J. Bacteriol. 2016;198:1035–1043. doi: 10.1128/JB.00864-15. PubMed DOI PMC
Wang Z., Gerstein M., Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57–63. doi: 10.1038/nrg2484. PubMed DOI PMC
Cunningham F., Achuthan P., Akanni W., Allen J., Amode M.R., Armean I.M., Bennett R., Bhai J., Billis K., Boddu S., et al. Ensembl 2019. Nucleic Acids Res. 2019;47:D745–D751. doi: 10.1093/nar/gky1113. PubMed DOI PMC
Kim D., Langmead B., Salzberg S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Smolkova B., Lunova M., Lynnyk A., Uzhytchak M., Churpita O., Jirsa M., Kubinova S., Lunov O., Dejneka A. Non-thermal plasma, as a new physicochemical source, to induce redox imbalance and subsequent cell death in liver cancer cell lines. Cell. Physiol. Biochem. 2019;52:119–140. PubMed
Lunova M., Smolkova B., Uzhytchak M., Janouskova K.Z., Jirsa M., Egorova D., Kulikov A., Kubinova S., Dejneka A., Lunov O. Light-induced modulation of the mitochondrial respiratory chain activity: Possibilities and limitations. Cell. Mol. Life Sci. 2020;77:2815–2838. doi: 10.1007/s00018-019-03321-z. PubMed DOI PMC
Lunova M., Prokhorov A., Jirsa M., Hof M., Olzynska A., Jurkiewicz P., Kubinova S., Lunov O., Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep. 2017;7:16049. doi: 10.1038/s41598-017-16447-6. PubMed DOI PMC
Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells
High cysteine diet reduces insulin resistance in SHR-CRP rats