Increased Endogenous Activity of the Renin-Angiotensin System Reduces Infarct Size in the Rats with Early Angiotensin II-dependent Hypertension which Survive the Acute Ischemia/Reperfusion Injury

. 2021 ; 12 () : 679060. [epub] 20210528

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34122103

We investigated the role of the interaction between hypertension and the renin-angiotensin system in the pathophysiology of myocardial ischemia/reperfusion injury. We hypothesized that in the early phase of angiotensin II (ANG II)-dependent hypertension with developed left ventricular hypertrophy, cardioprotective mechanism(s) are fully activated. The experiments were performed in transgenic rats with inducible hypertension, noninduced rats served as controls. The early phase of ANG II-dependent hypertension was induced by five-days (5 days) dietary indole-3-carbinol administration. Cardiac hypertrophy, ANG II and ANG 1-7 levels, protein expression of their receptors and enzymes were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury, and infarct size and ventricular arrhythmias were assessed. Induced rats developed marked cardiac hypertrophy accompanied by elevated ANG levels. Ischemia/reperfusion mortality was significantly higher in induced than noninduced rats (52.1 and 25%, respectively). The blockade of AT1 receptors with losartan significantly increased survival rate in both groups. Myocardial infarct size was significantly reduced after 5 days induction (by 11%), without changes after losartan treatment. In conclusion, we confirmed improved cardiac tolerance to ischemia/reperfusion injury in hypertensive cardiohypertrophied rats and found that activation of AT1 receptors by locally produced ANG II in the heart was not the mechanism underlying infarct size reduction.

Zobrazit více v PubMed

Alánová P., Husková Z., Kopkan L., Sporková A., Jíchová Š., Neckář J., et al. (2015). Orally Active Epoxyeicosatrienoic Acid Analog Does Not Exhibit Antihypertensive and Reno- or Cardioprotective Actions in Two-Kidney, One-Clip Goldblatt Hypertensive Rats. Vasc. Pharmacol. 73 (October), 45–56. 10.1016/j.vph.2015.08.013 PubMed DOI

Anderson P. G., Bishop S. P., Digerness S. B. (1987). Transmural Progression of Morphologic Changes during Ischemic Contracture and Reperfusion in the Normal and Hypertrophied Rat Heart. Am. J. Pathol. 129 (1), 152–167. Available at: http:///pmc/articles/PMC1899704/?report=abstract PubMed PMC

Andersson C., Johnson A. D., Benjamin E. J., Levy D., Vasan R. S. (2019). 70-Year Legacy of the Framingham Heart Study. Nat. Rev. Cardiol. 16, 687–698. 10.1038/s41569-019-0202-5 PubMed DOI

Bulluck H., Yellon D. M., Hausenloy D. J. (2016). Reducing Myocardial Infarct Size: Challenges and Future Opportunities. Heart 102, 341–348. 10.1136/heartjnl-2015-307855 PubMed DOI PMC

Čertíková Chábová V., Vernerová Z., Kujal P., Husková Z., Škaroupková P., Tesař V., et al. (2014). “Addition of ETA Receptor Blockade Increases Renoprotection provided by Renin–Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Rats. Life Sci. 118 (2). 297–305. 10.1016/j.lfs.2013.12.018 PubMed DOI

Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., et al. (2018). Two Pharmacological Epoxyeicosatrienoic Acid-Enhancing Therapies Are Effectively Antihypertensive and Reduce the Severity of Ischemic Arrhythmias in Rats with Angiotensin II-dependent Hypertension. J. Hypertens. 36 (6). 1326–1341. 10.1097/HJH.0000000000001708 PubMed DOI PMC

Cunningham M. W., Sasser J. M., West C. A., Milani C. J., Baylis C., Mitchell K. D. (2013). Renal Nitric Oxide Synthase and Antioxidant Preservation in Cyp1a1-Ren-2 Transgenic Rats with Inducible Malignant Hypertension. Am. J. Hypertens. 26 (10), 1242–1249. 10.1093/ajh/hpt096 PubMed DOI PMC

Dellsperger K. C., Clothier J. L., Hartnett J. A., Haun L. M., Marcus M. L. (1988). Acceleration of the Wavefront of Myocardial Necrosis by Chronic Hypertension and Left Ventricular Hypertrophy in Dogs. Circ. Res. 63 (1), 87–96. 10.1161/01.RES.63.1.87 PubMed DOI

Dolgacheva L. P., Turovskaya M. V., Dynnik V. V., Zinchenko V. P., Goncharov N. V., Davletov B., et al. (2016). Angiotensin II Activates Different Calcium Signaling Pathways in Adipocytes. Arch. Biochem. Biophys. 593 (March), 38–49. 10.1016/j.abb.2016.02.001 PubMed DOI

Dvorák P., Kramer H. J., Bäcker A., Malý J., Kopkan L., Vanecková I., et al. (2004). Blockade of Endothelin Receptors Attenuates End-Organ Damage in Homozygous Hypertensive Ren-2 Transgenic Rats. Kidney Blood Press. Res. 27 (4), 248–258. 10.1159/000080052 PubMed DOI

Erbanová M., Thumová M., Husková Z., Vanecková I., Vanourková Z., Mullins J. J., et al. (2009). Impairment of the Autoregulation of Renal Hemodynamics and of the Pressure-Natriuresis Relationship Precedes the Development of Hypertension in Cyp1a1-Ren-2 Transgenic Rats. J. Hypertens. 27 (3). 575–586. 10.1097/HJH.0b013e32831cbd5a PubMed DOI

Ferdinandy P., Schulz R., Baxter G. F. (2007). Interaction of Cardiovascular Risk Factors with Myocardial Ischemia/Reperfusion Injury, Preconditioning, and Postconditioning. Pharmacol. Rev. 59(4). 418–458. 10.1124/pr.107.06002 PubMed DOI

Ford W. R., Clanachan A. S., Hiley C. R., Jugdutt B. I. (2001). Angiotensin II Reduces Infarct Size and Has No Effect on post-ischaemic Contractile Dysfunction in Isolated Rat Hearts. Br. J. Pharmacol. 134 (1), 38–45. 10.1038/sj.bjp.0704225 PubMed DOI PMC

Garcia-Dorado D., Théroux P., Elizaga J., Fernandez Avilés F., Alonso J., Solares J. (1988). Influence of Tachycardia and arterial Hypertension on Infarct Size in the Pig. Cardiovasc. Res. 22(9), 620–626. 10.1093/cvr/22.9.620 PubMed DOI

Ginks W. R., Sybers H. D., Maroko P. R., Covell J. W., Sobel B. E., Ross J J. R. (1972). Coronary Artery Reperfusion. II. Reduction of Myocardial Infarct Size at 1 Week after the Coronary Occlusion. J. Clin. Invest. 51 (10), 2717–2723. 10.1172/JCI107091 PubMed DOI PMC

Granger D. N., Kvietys P. R. (2015). Reperfusion Injury and Reactive Oxygen Species: The Evolution of a Concept. Redox Biol. 6 (December), 524–551. 10.1016/j.redox.2015.08.020 PubMed DOI PMC

Honetschlägerová Z., Husková Z., Vaňourková Z., Sporková A., Kramer H. J., Hwang S. H., et al. (2011). Renal Mechanisms Contributing to the Antihypertensive Action of Soluble Epoxide Hydrolase Inhibition in Ren-2 Transgenic Rats with Inducible Hypertension. J. Physiol. 589 (1), 207–219. 10.1113/jphysiol.2010.199505 PubMed DOI PMC

Hostrup A., Christensen G. L., Bentzen B. H., Liang B., Aplin M., Grunnet M., et al. (2012). Functionally Selective AT(1) Receptor Activation Reduces Ischemia Reperfusion Injury. Cell Physiol. Biochem. 30 (3), 642–652. 10.1159/000341445 PubMed DOI

Hrdlička J., Neckář J., Papoušek F., Husková Z., Kikerlová S., Vaňourková Z., et al. (2019). Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats. Front. Pharmacol. 10 (March), 159. 10.3389/fphar.2019.00159 PubMed DOI PMC

Husková Z., Kopkan L., Červenková L., Doleželová Š., Vaňourková Z., Škaroupková P., et al. (2016). Intrarenal Alterations of the Angiotensin-Converting Enzyme Type 2/Angiotensin 1-7 Complex of the Renin-Angiotensin System Do Not Alter the Course of Malignant Hypertension in Cyp1a1-Ren-2 Transgenic Rats. Clin. Exp. Pharmacol. Physiol. 43 (4), 438–449. 10.1111/1440-1681.12553 PubMed DOI

Husková Z., Vanourková Z., Erbanová M., Thumová M., Opocenský M., Mullins J. J., et al. (2010). Inappropriately High Circulating and Intrarenal Angiotensin II Levels during Dietary Salt Loading Exacerbate Hypertension in Cyp1a1-Ren-2 Transgenic Rats. J. Hypertens. 28 (3)495–509. 10.1097/HJH.0b013e3283345d69 PubMed DOI

Jennings R. B. (2013). Historical Perspective on the Pathology of Myocardial Ischemia/Reperfusion Injury. Circ. ResearchCirc Res 113 (4), 428-438. 10.1161/CIRCRESAHA.113.300987 PubMed DOI

Jíchová Š., Kopkan L., Husková Z., Doleželová Š., Neckář J., Kujal P., et al. (2016). Epoxyeicosatrienoic Acid Analog Attenuates the Development of Malignant Hypertension, but Does Not Reverse it once Established: A Study in Cyp1a1-Ren-2 Transgenic Rats HHS Public Access. J. Hypertens. 34 (10), 2008–2025. 10.1097/HJH.0000000000001029 PubMed DOI PMC

Kantachuvesiri S., Fleming S., Peters J., Peters B., Brooker G., Lammie A. G., et al. (2001). Controlled Hypertension, a Transgenic Toggle Switch Reveals Differential Mechanisms Underlying Vascular Disease. J. Biol. Chem. 276 (39), 36727–36733. 10.1074/jbc.M103296200 PubMed DOI

Kaschina E., Namsolleck P, Unger T. (2017). AT2 Receptors in Cardiovascular and Renal Diseases. Pharmacol. Rese. 125, 39–47. 10.1016/j.phrs.2017.07.008 PubMed DOI

Kobori H., Nangaku M., Navar L. G., Nishiyama A. (2007). The Intrarenal Renin-Angiotensin System: From Physiology to the Pathobiology of Hypertension and Kidney Disease. Pharmacol. Rev. 59 (3), 251. 10.1124/pr.59.3.3 PubMed DOI

Lee Y. M., Peng Y. Y., Ding Y. A., Yen M. H. (1997). Losartan Attenuates Myocardial Ischemia-Induced Ventricular Arrhythmias and Reperfusion Injury in Spontaneously Hypertensive Rats. Am. J. Hypertens. 10 (8), 852–858. 10.1016/S0895-7061(97)00119-2 PubMed DOI

Leung P. S. (2010). Local RAS. Adv. Exp. Med. Biol. 690, 69–87. 10.1007/978-90-481-9060-7_5 PubMed DOI PMC

Liu Y., Tsuchida A., Cohen M. V., Downey J. M. (1995). Pretreatment with Angiotensin II Activates Protein Kinase C and Limits Myocardial Infarction in Isolated Rabbit Hearts. J. Mol. Cell Cardiol. 27 (3), 883–892. 10.1016/0022-2828(95)90038-1 PubMed DOI

Maroko P. R., Libby P., Ginks W. R., Bloor C. M., Shell W. E., Sobel B. E., et al. (1972). Coronary Artery Reperfusion. I. Early Effects on Local Myocardial Function and the Extent of Myocardial Necrosis. J. Clin. Invest. 51 (10), 2710–2716. 10.1172/JCI107090 PubMed DOI PMC

Matsuhisa S., Otani H., Okazaki T., Yamashita K., Akita Y., Sato D., et al. (2008). Angiotensin II Type 1 Receptor Blocker Preserves Tolerance to Ischemia-Reperfusion Injury in Dahl Salt-Sensitive Rat Heart. Am. J. Physiol. Heart Circ. Physiol. 294, H2473–H2479. 10.1152/ajpheart.91533.2007 PubMed DOI

McKinney C. A., Fattah C., Loughrey C. M., Milligan G., Nicklin S. A. (2014). Angiotensin-(1-7) and Angiotensin-(1-9): Function in Cardiac and Vascular Remodelling. Clin. Sci. 126 (12), 815. 10.1042/CS20130436 PubMed DOI

Mehta P. K., Griendling K. K. (2007). Angiotensin II Cell Signaling: Physiological and Pathological Effects in the Cardiovascular System. Am. J. Physiol. Cell Physiol. 292 (1), C82–C97. 10.1152/ajpcell.00287.2006 PubMed DOI

Mozaffari M. S., Schaffer S. W. (2003). Effect of Hypertension and Hypertension-Glucose Intolerance on Myocardial Ischemic Injury. Hypertension 42 (5), 1042–1049. 10.1161/01.HYP.0000095614.91961.40 PubMed DOI

Mozaffari M. S., Liu J. Y., Abebe W., Baban B. (2013). Mechanisms of Load Dependency of Myocardial Ischemia Reperfusion Injury. Am. J. Cardiovasc. Dis. 3 (4), 180–196. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24224132 PubMed PMC

Mullins L. J., Mullins J. (2003). Current Successes and Limitations of Using Genetic Modification for Blood Pressure Research. Pflugers Arch. 445, 491–494. 10.1007/s00424-002-0968-9 PubMed DOI

Nakano A., Miura T., Ura N., Suzuki K., Shimamoto K. (1997). Role of the Angiotensin II Type 1 Receptor in Preconditioning against Infarction. Coron. Artery Dis. 8 (6), 343–350. 10.1097/00019501-199706000-00003 PubMed DOI

Navar L. G., Zou L., Von Thun A., Tarng Wang C., Imig J. D., Mitchell K. D., et al. (1998). Unraveling the Mystery of Goldblatt Hypertension. News Physiol. Sci. 13 (4), 170–176. 10.1152/physiologyonline.1998.13.4.170 PubMed DOI

Neckár J., Kopkan L., Husková Z., Kolář F., Papoušek F., Kramer H. J., et al. (2012). Inhibition of Soluble Epoxide Hydrolase by Cis-4-[4-(3-Adamantan-1-Yl-Ureido)Cyclohexyl-Oxy]Benzoic Acid Exhibits Antihypertensive and Cardioprotective Actions in Transgenic Rats with Angiotensin II-dependent Hypertension NIH Public Access Author Manuscri. Clin. Sci. (Lond) 122 (11), 513–525. 10.1042/CS20110622 PubMed DOI PMC

Nuñez R. E., Javadov S., Escobales N. (2018). Critical Role of Angiotensin II Type 2 Receptors in the Control of Mitochondrial and Cardiac Function in Angiotensin II-Preconditioned Rat Hearts. Pflugers Archiv Eur. J. Physiol. 470 (9), 1391–1403. 10.1007/s00424-018-2153-9 PubMed DOI PMC

Oudot A., Vergely C., Ecarnot-Laubriet A., Rochette L. (2003). Angiotensin II Activates NADPH Oxidase in Isolated Rat Hearts Subjected to Ischaemia-Reperfusion. Eur. J. Pharmacol. 462 (1–3), 145–154. 10.1016/S0014-2999(03)01315-3 PubMed DOI

Patel V. B., Zhong J. C., Grant M. B., Oudit G. Y. (2016). Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ. Res. 118(8), 1313. 10.1161/CIRCRESAHA.116.307708 PubMed DOI PMC

Paul M., Poyan Mehr A., Kreutz R. (2006). Physiology of Local Renin-Angiotensin Systems. Physiol. Rev. 86(3), 747–803. 10.1152/physrev.00036.2005 PubMed DOI

Penna C., Pasqua T., Amelio D., Perrelli M. G., Angotti C., Tullio F., et al. (2014). Catestatin Increases the Expression of Anti-apoptotic and Pro-angiogenetic Factors in the post-ischemic Hypertrophied Heart of SHR. PLoS One 9 (8), e102536. 10.1371/journal.pone.0102536 PubMed DOI PMC

Peters B., Grisk O., Becher B., Wanka H., Kuttler B., Lüdemann J., et al. (2008). Dose-dependent Titration of Prorenin and Blood Pressure in Cyp1a1ren-2 Transgenic Rats: Absence of Prorenin-Induced Glomerulosclerosis. J. Hypertens. 26 (1), 102–109. 10.1097/HJH.0b013e3282f0ab66 PubMed DOI

Peters B. S., Dornaika R., Hosten N., Hadlich S., Mullins J. J., Peters J., et al. (2012). Regression of Cardiac Hypertrophy in Cyp1a1ren-2 Transgenic Rats. J. Magn. Reson. Imaging 36 (2), 373–378. 10.1002/jmri.23661 PubMed DOI

Peters J., Schlüter T., Riegel T., Peters B. S., Beineke A., Maschke U., et al. (2009). Lack of Cardiac Fibrosis in a New Model of High Prorenin Hyperaldosteronism. Am. J. Physiol. - Heart Circulatory Physiol. 297 (5), H1845. 10.1152/ajpheart.01135.2008 PubMed DOI PMC

Pinto Y. M., Paul M., Ganten D. (1998). Lessons from Rat Models of Hypertension: From Goldblatt to Genetic Engineering. Cardiovasc. Res. 39(1), 77–88. 10.1016/S0008-6363(98)00077-7 PubMed DOI

Sanada S., Komuro I., Kitakaze M. (2011). Pathophysiology of Myocardial Reperfusion Injury: Preconditioning, Postconditioning, and Translational Aspects of Protective Measures. Am. J. Physiol. Heart Circ. Physiol. 301, H1723–H1741. 10.1152/ajpheart.00553.2011.-Heart PubMed DOI

Sedláková L., Kikerlová S., Husková Z., Červenková L., Chábová V. Č., Zicha J., et al. (2018). 20-Hydroxyeicosatetraenoic Acid Antagonist Attenuates the Development of Malignant Hypertension and Reverses it once Established: A Study in Cyp1a1-Ren-2 Transgenic Rats. Biosci. Rep. 38 (5). BSR20171496. 10.1042/BSR20171496 PubMed DOI PMC

Shi L., Mao C., Xu Z., Zhang L. (2010). Angiotensin-Converting Enzymes and Drug Discovery in Cardiovascular Diseases. Drug Discov. Today. 15(9-10), 332–341. 10.1016/j.drudis.2010.02.003 PubMed DOI PMC

Song M. A., Dasgupta C., Zhang L. (2015). Chronic Losartan Treatment Up-Regulates at 1 R and Increases the Heart Vulnerability to Acute Onset of Ischemia and Reperfusion Injury in Male Rats. PLoS One 10(7), e0132712. 10.1371/journal.pone.0132712 PubMed DOI PMC

Sporková A., Jíchová S., Husková Z., Kopkan L., Nishiyama A., Hwang S. H., et al. (2014). Different Mechanisms of Acute versus Long-Term Antihypertensive Effects of Soluble Epoxide Hydrolase Inhibition: Studies in Cyp1a1-Ren-2 Transgenic Rats. Clin. Exp. Pharmacol. Physiol. 41 (12), 1003–1013. 10.1111/1440-1681.12310 PubMed DOI PMC

Vaněčková I., Řezáčová L., Kuneš J., Zicha J. (2016). Moderate Additive Effects of Endothelin Receptor A Blockade in Ren-2 Transgenic Rats Subjected to Various Types of RAS Blockade. Life Sci. 159 (August), 127–134. 10.1016/j.lfs.2016.01.020 PubMed DOI

Vanourková Z., Kramer H. J., Erbanová M., Bäcker A., Cervenka L., Husková Z., et al. (2009). Endothelin Receptor Blockade Does Not Affect Blood Pressure or Angiotensin II Levels in CYP1A1-Ren-2 Transgenic Rats with Acutely Induced Hypertension. Vasc. Pharmacol. 50 (5–6)194–199. 10.1016/j.vph.2009.01.002 PubMed DOI

Vidt D. G., Michael Prisant L. (2005). Hypertensive Heart Disease. J. Clin. Hypertens. 7 (4), 231–238. 10.1111/j.1524-6175.2005.04119.x PubMed DOI PMC

Virani S. S., Alonso A., Benjamin E. J., Bittencourt M. S., Callaway C. W., Carson A. P., et al. (2020). Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association. Circulation 141 (9), e139–e596. 10.1161/CIR.0000000000000757 PubMed DOI

Wagner C., Ebner B., Tillack D., Strasser R. H., Weinbrenner C. (2013). Cardioprotection by Ischemic Postconditioning Is Abrogated in Hypertrophied Myocardium of Spontaneously Hypertensive Rats. J. Cardiovasc. Pharmacol. 61 (1), 35–41. 10.1097/FJC.0b013e3182760c4d PubMed DOI

Walker M. J., Curtis M. J., Hearse D. J., Campbell R. W., Janse M. J., Yellon D. M., et al. (1988). The Lambeth Conventions: Guidelines for the Study of Arrhythmias in Ischaemia Infarction, and Reperfusion. Cardiovasc. Res. 22 (7), 447–455. 10.1093/cvr/22.7.447 PubMed DOI

Widdop R. E., Jones E. S., Hannan R. E., Gaspari TA. (2003). Angiotensin AT2 Receptors: Cardiovascular Hope or Hype? Br J Pharmacol 140, 809–824. 10.1038/sj.bjp.0705448 PubMed DOI PMC

Wu B., Lin R., Dai R., Chen C., Wu H., Hong M. (2013). Valsartan Attenuates Oxidative Stress and NF-Κb Activation and Reduces Myocardial Apoptosis after Ischemia and Reperfusion. Eur. J. Pharmacol. 705 (1–3), 140–147. 10.1016/j.ejphar.2013.02.036 PubMed DOI

Yang T., Xu C. (2017). Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update. J. Am. Soc. Nephrol 28 (4), 1040–1049. 10.1681/ASN.2016070734 PubMed DOI PMC

Zhu B., Sun Y., Sievers R. E., Browne A. E., Pulukurthy S., Sudhir K., et al. (2000). Comparative Effects of Pretreatment with Captopril and Losartan on Cardiovascular protection in a Rat Model of Ischemia-Reperfusion. J. Am. Coll. Cardiol. 35 (3), 787–795. 10.1016/S0735-1097(99)00592-6 PubMed DOI

Zhuo J. L., Li X. C. (2011). New Insights and Perspectives on Intrarenal Renin-Angiotensin System: Focus on Intracrine/Intracellular Angiotensin II. Peptides. Peptides. 32 (7), 1551–1565. 10.1016/j.peptides.2011.05.012 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...