Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
HL59699
NHLBI NIH HHS - United States
R01 HL059699
NHLBI NIH HHS - United States
P01 DK038226
NIDDK NIH HHS - United States
R01 ES002710
NIEHS NIH HHS - United States
P42 ES004699
NIEHS NIH HHS - United States
R01 ES002710-31
NIEHS NIH HHS - United States
DK38226
NIDDK NIH HHS - United States
F32 NS009699
NINDS NIH HHS - United States
R01 ES02710
NIEHS NIH HHS - United States
Howard Hughes Medical Institute - United States
F32 NS010499
NINDS NIH HHS - United States
PubMed
21078594
PubMed Central
PMC3039270
DOI
10.1113/jphysiol.2010.199505
PII: jphysiol.2010.199505
Knihovny.cz E-zdroje
- MeSH
- angiotensin II MeSH
- antihypertenziva aplikace a dávkování farmakologie MeSH
- aplikace orální MeSH
- benzoáty aplikace a dávkování farmakologie MeSH
- časové faktory MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- epoxid hydrolasy antagonisté a inhibitory metabolismus MeSH
- hodnoty glomerulární filtrace účinky léků MeSH
- hypertenze chemicky indukované enzymologie genetika patofyziologie prevence a kontrola MeSH
- inhibitory enzymů aplikace a dávkování farmakologie MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- kyseliny arachidonové metabolismus MeSH
- kyseliny hydroxyeikosatetraenové metabolismus MeSH
- ledviny krevní zásobení účinky léků enzymologie patofyziologie MeSH
- močovina aplikace a dávkování analogy a deriváty farmakologie MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- promotorové oblasti (genetika) MeSH
- proteinurie metabolismus patofyziologie prevence a kontrola MeSH
- renální průtok plazmy účinky léků MeSH
- renin genetika metabolismus MeSH
- sodík moč MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 4-(4-(3-adamantan-1-ylureido)cyclohexyloxy)benzoic acid MeSH Prohlížeč
- angiotensin II MeSH
- antihypertenziva MeSH
- benzoáty MeSH
- cytochrom P-450 CYP1A1 MeSH
- EPHX2 protein, rat MeSH Prohlížeč
- epoxid hydrolasy MeSH
- inhibitory enzymů MeSH
- kyseliny arachidonové MeSH
- kyseliny hydroxyeikosatetraenové MeSH
- močovina MeSH
- Ren2 protein, mouse MeSH Prohlížeč
- renin MeSH
- sodík MeSH
In the present study, we examined the effects of soluble epoxide hydrolase (sEH) inhibition on the development of angiotensin II-dependent hypertension and on renal function in transgenic rats with inducible expression of the mouse renin gene (strain name Cyp1a1-Ren-2). Hypertension was induced in these rats by indole-3-carbinol (I3C; 0.3% in the diet) for 12 days. The sEH inhibitor cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB) was given in two doses (13 or 26 mg l-1) in drinking water. Blood pressure (BP), body weight (BW) and renal excretory parameters were monitored in conscious animals during the experiment. Renal haemodynamics was assessed at the end of treatment in anaesthetized rats. I3C administration resulted in severe hypertension with a rise in systolic BP from 118 ± 2 to 202 ± 3 mmHg, a loss of BW from 266 ± 5 to 228 ± 4 g and a rise in proteinuria from 14 ± 2 to 34 ± 3 mg day-1. Both doses of c-AUCB significantly attenuated the development of hypertension (systolic BP of 181 ± 4 and 176 ± 4 mmHg, respectively), the loss in BW (256 ± 4 and 259 ± 3 g, respectively) and the degree of proteinuria (27 ± 2 and 25 ± 3 mg day-1, respectively) to a similar extent. Moreover, c-AUCB prevented the reduction in renal plasma flow (5.4 ± 0.4 vs. 4.6 ± 0.3 ml min-1 g-1) and significantly increased sodium excretion (0.84 ± 0.16 vs. 0.38 ± 0.08 μmol min-1 g-1) during I3C administration. These data suggest that the oral administration of c-AUCB displays antihypertensive effects in Ren-2 transgenic rats with inducible malignant hypertension via an improvement of renal function.
Zobrazit více v PubMed
Ai D, Fu Y, Guo D, Tanaka H, Wang N, Tang C, Hammock BD, Shyy JY, Zhu Y. Angiotensin II up-regulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo. Proc Natl Acad Sci U S A. 2007;104:9018–9023. PubMed PMC
Campbell DJ, Karam H, Ménard J, Bruneval P, Mullins JJ. Prorenin contributes to angiotensin peptide formation in transgenic rats with rat prorenin expression targeted to the liver. Hypertension. 2009;54:1248–1253. PubMed
Capdevila JH, Falck JR, Imig JD. Roles of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension. Kidney Int. 2007;72:683–689. PubMed
Cervenka L, Wang CT, Navar LG. Effects of acute AT1 receptor blockade by candesartan on arterial pressure and renal function in rats. Am J Physiol Renal Physiol. 1998;274:F940–945. PubMed
Chábová VC, Kramer HJ, Vanecková I, Vernerová Z, Eis V, Tesar V, Skaroupková P, Thumová M, Schejbalová S, Husková Z, Vanourková Z, Kolský A, Imig JD, Cervenka L. Effects of chronic cytochrome P-450 inhibition on the course of hypertension and end-organ damage in Ren-2 transgenic rats. Vascul Pharmacol. 2007;47:145–159. PubMed
Dorrance AM, Rupp N, Pollock DM, Newman JW, Hammock BD, Imig JD. An epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA), reduces ischemic cerebral infarct size in stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2005;46:842–848. PubMed PMC
Dos Santos EA, Dahly-Vernon AJ, Hoagland KM, Roman RJ. Inhibition of the formation of EETs and 20-HETE with 1-aminobenzotriazole attenuates pressure-natriuresis. Am J Physiol Regul Integr Comp Physiol. 2004;287:R58–R68. PubMed
Drummond GB. Reporting ethical matters in The Journal of Physiology: standards and advice. J Physiol. 2009;587:713–719. PubMed PMC
Erbanová M, Thumová M, Husková Z, Vanecková I, Vanourková Z, Mullins JJ, Kramer HJ, Bürgelová M, Rakusan D, Cervenka L. Impairment of the autoregulation of renal hemodynamics and of the pressure–natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2009;27:575–586. PubMed
Fleming I. Cytochrome P450 and vascular homeostasis. Circ Res. 2001;89:753–762. PubMed
Graciano ML, Mouton CR, Patterson ME, Seth DM, Mullins JJ, Mitchell KD. Renal vascular and tubulointerstitial inflammation and proliferation in Cyp1a1-Ren2 transgenic rats with inducible ANG II-dependent malignant hypertension. Am J Physiol Renal Physiol. 2007;292:F1858–1866. PubMed
Hall JE, Guyton AC, Smith MJ, Jr, Coleman TG. Blood pressure and renal function during chronic changes in sodium intake: role of angiotensin. Am J Physiol Renal Physiol. 1980;239:F271–F280. PubMed
Hercule HC, Schunck WH, Gross V, Seringer J, Leung FP, Weldon SM, da Costa Goncalves ACh, Huang Y, Luft FC, Gollasch M. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 2009;29:54–60. PubMed
Huang H, Morisseau C, Wang J, Yang T, Falck JR, Hammock BD, Wang MH. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. Am J Physiol Renal Physiol. 2007;293:F342–349. PubMed
Husková Z, Vanourková Z, Erbanová M, Thumová M, Opocenský M, Mullins JJ, Kramer HJ, Bürgelová M, Cervenka L. Inappropriately high circulating and intrarenal angiotensin II levels during dietary salt loading exacerbate hypertension in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2010;28:495–509. PubMed
Hwang SH, Tsai HJ, Liu JY, Morisseau C, Hammock BD. Orally bioavailable potent soluble epoxide hydrolase inhibitors. J Med Chem. 2007;50:3825–3840. PubMed PMC
Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov. 2009;8:794–805. PubMed PMC
Imig JD, Zhao X, Zaharis CZ, Olearczyk JJ, Pollock DM, Newman JW, Kim IH, Watanabe T, Hammock BD. An orally active epoxide hydrolase inhibitor lowers blood pressure and provides renal protection in salt-sensitive hypertension. Hypertension. 2005;46:975–981. PubMed PMC
Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Renal Physiol. 2005;289:F496–503. PubMed
Imig JD. Cardiovascular therapeutic aspects of soluble epoxide hydrolase inhibitors. Cardiovasc Drug Rev. 2006;24:169–188. PubMed
Imig JD. Adenosine2A receptors and epoxyeicosatrienoic acids: a recipe for salt and blood pressure regulation. Hypertension. 2009;54:1223–1225. PubMed PMC
Inceoglu B, Schmelzer KR, Morisseau C, Jinks SL, Hammock BD. Soluble epoxide hydrolase inhibition reveals novel biological functions of epoxyeicosatrienoic acids (EETs) Prostaglandins Other Lipid Mediat. 2007;82:42–49. PubMed PMC
Jellinck PH, Forkert PG, Riddick DS, Okey AB, Michnovicz JJ, Bradlow HL. Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylation. Biochem Pharmacol. 1993;45:1129–1136. PubMed
Jiang JG, Chen RJ, Xiao B, Yang S, Wang JN, Wang Y, Cowart LA, Xiao X, Wang DW, Xia Y. Regulation of endothelial nitric-oxide synthase activity through phosphorylation in response to epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat. 2007;82:162–174. PubMed
Jung O, Brandes RP, Kim IH, Schweda F, Schmidt R, Hammock BD, Busse R, Fleming I. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension. 2005;45:759–765. PubMed
Kantachuvesiri S, Fleming S, Peters J, Peters B, Brooker G, Lammie AG, McGrath I, Kotelevtsev Y, Mullins JJ. Controlled hypertension, a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J Biol Chem. 2001;276:36727–36733. PubMed
Kopkan L, Kramer HJ, Husková Z, Vanourková Z, Skaroupková P, Thurmová M, Cervenka L. The role of intrarenal angiotensin II in the development of hypertension in Ren-2 transgenic rats. J Hypertens. 2005;23:1531–1539. PubMed
Kopkan L, Majid DS. Superoxide contributes to development of salt sensitivity and hypertension induced by nitric oxide deficiency. Hypertension. 2005;46:1026–1031. PubMed
Loch D, Hoey A, Morisseau C, Hammock BO, Brown L. Prevention of hypertension in DOCA-salt rats by an inhibitor of soluble epoxide hydrolase. Cell Biochem Biophys. 2007;47:87–98. PubMed PMC
Manhiani M, Quigley JE, Knight SF, Tasoobshirazi S, Moore T, Brands MW, Hammock BD, Imig JD. Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. Am J Physiol Renal Physiol. 2009;297:F740–748. PubMed PMC
Mitchell KD, Bagatell SJ, Miller CS, Mouton CR, Seth DM, Mullins JJ. Genetic clamping of renin gene expression induces hypertension and elevation of intrarenal Ang II levels of graded severity in Cyp1a1-Ren2 transgenic rats. J Renin Angiotensin Aldosterone Syst. 2006;7:74–86. PubMed
Mitchell KD, Mullins JJ. Enhanced tubuloglomerular feedback in Cyp1a1-Ren2 transgenic rats with inducible ANG II-dependent malignant hypertension. Am J Physiol Renal Physiol. 2005;289:F1210–1216. PubMed
Navar LG, Nishiyama A. Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens. 2004;13:107–115. PubMed
Navar LG, Inscho EW, Majid SA, Imig JD, Harrison-Bernard LM, Mitchell KD. Paracrine regulation of the renal microcirculation. Physiol Rev. 1996;76:425–536. PubMed
Ortiz RM, Graciano ML, Mullins JJ, Mitchell KD. Aldosterone receptor antagonism alleviates proteinuria, but not malignant hypertension in Cyp1a1-Ren2 transgenic rats. Am J Physiol Renal Physiol. 2007;293:F1584–1591. PubMed
Oyekan AO, Youseff T, Fulton D, Quilley J, McGiff JC. Renal cytochrome P450 ω-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride. J Clin Invest. 1999;104:1131–1137. PubMed PMC
Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–185. PubMed
Sakairi Y, Jacobson HR, Noland TD, Capdevila JH, Falck JR, Breyer MD. 5,6-EET inhibits ion transport in collecting duct by stimulating endogenous prostaglandin synthesis. Am J Physiol Renal Physiol. 1995;268:F931–939. PubMed
Satoh T, Cohen HT, Katz AI. Intracellular signaling in the regulation of renal Na-K-ATPase. II. Role of eicosanoids. J Clin Invest. 1993;91:409–415. PubMed PMC
Sun P, Lin DH, Wang T, Babilonia E, Wang Z, Jin Y, Kemp R, Nasjletti A, Wang WH. Low Na intake suppresses expression of CYP2C23 and arachidonic acid-induced inhibition of ENaC. Am J Physiol Renal Physiol. 2006;291:F1192–1200. PubMed
Vanecková I, Kopkan L, Husková Z, Vanourková Z, Schejbalová S, Cervenka L, Kramer HJ. Long-term prevention of hypertension and end-organ damage in Ren-2 transgenic rats is achieved only with persistent but not transient AT1 receptor blockade. Kidney Blood Press Res. 2007;30:38–44. PubMed
Vanourková Z, Kramer HJ, Husková Z, Vanecková I, Opocenský M, Chábová VC, Tesar V, Skaroupková P, Thumová M, Dohnalová M, Mullins JJ, Cervenka L. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens. 2006;24:2465–2472. PubMed
Véniant M, Whitworth CE, Ménard J, Sharp MGF, Gonzales MF, Bruneval P, Mullins JJ. Developmental studies demonstrate age-dependent elevation of renin activity in TGR(mRen2)27 rats. Am J Hypertens. 1995;8:1167–1176. PubMed
Watanabe T, Morisseau C, Newman JW, Hammock BD. In vitro metabolism of the mammalian soluble epoxide hydrolase inhibitor, 1-cyclohexyl-3-dodecyl-urea. Drug Metab Dispos. 2003;31:846–853. PubMed
Wei Y, Lin DH, Kemp R, Yaddanapudi GS, Nasjletti A, Falck JR, Wang WH. Arachidonic acid inhibits epithelial Na channel via cytochrome P450 (CYP) epoxygenase-dependent metabolic pathways. J Gen Physiol. 2004;124:719–727. PubMed PMC
Yu Z, Xu F, Huse LM, Morisseau C, Draper AJ, Newman JW, Parker C, Graham L, Engler MM, Hammock BD, Zeldin DC, Kroetz DL. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res. 2000;87:992–998. PubMed
Zhao X, Yamamoto T, Newman JW, Kim IH, Watanabe T, Hammock BD, Stewart J, Pollock JS, Pollock DM, Imig JD. Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. J Am Soc Nephrol. 2004;15:1244–1253. PubMed
Epoxyeicosanoids in hypertension