Antihypertensive and renoprotective actions of soluble epoxide hydrolase inhibition in ANG II-dependent malignant hypertension are abolished by pretreatment with L-NAME

. 2013 Feb ; 31 (2) : 321-32.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23307303

Grantová podpora
HL59699 NHLBI NIH HHS - United States
R01 HL059699 NHLBI NIH HHS - United States
P01 DK038226 NIDDK NIH HHS - United States
Howard Hughes Medical Institute - United States
P42 ES013933 NIEHS NIH HHS - United States
DK38226 NIDDK NIH HHS - United States
R01 ES02710 NIEHS NIH HHS - United States
R01 ES013933 NIEHS NIH HHS - United States
R01 ES002710 NIEHS NIH HHS - United States

Odkazy

PubMed 23307303
PubMed Central PMC3773167
DOI 10.1097/hjh.0b013e32835b50aa
PII: 00004872-201302000-00016
Knihovny.cz E-zdroje

OBJECTIVE: The present study was performed to investigate in a model of malignant hypertension if the antihypertensive actions of soluble epoxide hydrolase (sEH) inhibition are nitric oxide (NO)-dependent. METHODS: ANG II-dependent malignant hypertension was induced through dietary administration for 3 days of the natural xenobiotic indole-3-carbinol (I3C) in Cyp1a1-Ren-2 transgenic rats. Blood pressure (BP) was monitored by radiotelemetry and treatment with the sEH inhibitor [cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyl-oxy]-benzoic acid (c-AUCB)] was started 48 h before administration of the diet containing I3C. In separate groups of rats, combined administration of the sEH inhibitor and the nonspecific NO synthase inhibitor [Nω-nitro-L-arginine methyl ester (L-NAME)] on the course of BP in I3C-induced and noninduced rats were evaluated. In addition, combined blockade of renin-angiotensin system (RAS) was superimposed on L-NAME administration in separate groups of rats. After 3 days of experimental protocols, the rats were prepared for renal functional studies and renal concentrations of epoxyeicosatrienoic acids (EETs) and their inactive metabolites dihydroxyeicosatrienoic acids (DHETEs) were measured. RESULTS: Treatment with c-AUCB increased the renal EETs/DHETEs ratio, attenuated the increases in BP, and prevented the decreases in renal function and the development of renal damage in I3C-induced Cyp1a1-Ren-2 rats. The BP lowering and renoprotective actions of the treatment with the sEH inhibitor c-AUCB were completely abolished by concomitant administration of L-NAME and not fully rescued by double RAS blockade without altering the increased EETs/DHETEs ratio. CONCLUSION: Our current findings indicate that the antihypertensive actions of sEH inhibition in this ANG II-dependent malignant form of hypertension are dependent on the interactions of endogenous bioavailability of EETs and NO.

Zobrazit více v PubMed

Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent response. Pfugers Arch. 2010;459:881–895. PubMed PMC

Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–185. PubMed

Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev. 2012;92:101–130. PubMed PMC

Li J, Carroll MA, Chander PN, Falck JR, Sangras B, Stier CT. Soluble epoxide hydrolase inhibitor, AUDA, prevents early salt-sensitive hypertension. Front Biosci. 2008;13:3480–3487. PubMed

Huang H, Morisseau C, Wang JF, Yang T, Falck JR, Hammock BD, Wang MH. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. Am J Physiol. 2007;293:F342–F349. PubMed

Sporkova A, Kopkan L, Varcabová A, Husková Z, Hwang SH, Hammock BD, et al. Role of cytochrome P450 metabolites in the regulation of renal function and blood pressure in 2-kidney, 1-clip hypertensive rats. Am J Physiol. 2011;300:R1468–R1475. PubMed PMC

Neckář J, Kopkan L, Husková Z, Kolář F, Papoušek F, Kramer HJ, et al. Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-I-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin Sci. 2012;122:513–525. PubMed PMC

Honetschlägerová Z, Husková Z, Vaňourková Z, Sporková A, Kramer HJ, Hwang SH, et al. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J Physiol. 2011;589:207–219. PubMed PMC

Honetschlägerová Z, Sporková A, Kopkan L, Husková Z, Hwang SH, Hammock BD, et al. Inhibition of soluble epoxide hydrolyse improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2011;29:1590–1601. PubMed PMC

Capdevila JH, Falck JR, Imig JD. Role of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension. Kidney Int. 2007;72:683–689. PubMed

Hercule HC, Schunck WH, Gross V, Seringer J, Leung FP, Weldon SM, et al. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Aterioscler Thromb Vasc Biol. 2009;29:54–60. PubMed

Kantachuvesiri S, Fleming S, Peters J, Peters B, Brooker G, Lammie AG, et al. Controlled hypertension, a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J Biol Chem. 2001;276:36727–36733. PubMed

Vaňourková Z, Kramer HJ, Husková Z, Vaněčková I, Opočenský M, Čertíková Chábová V, et al. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens. 2006;24:2465–2472. PubMed

Husková Z, Vaňourková Z, Erbanová M, Thumová M, Opočenský M, Mullins JJ, et al. Inappropriately high circulating and intrarenal angiotensin II levels during dietary salt loading exacerbate hypertension in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2010;28:495–509. PubMed

Mitchell KD, Bagatell SJ, Miller CS, Mouton CR, Seth DM, Mullins JJ. Genetic clamping of renin gene expression induces hypertension and elevation of intrarenal II levels of graded severity in Cyp1a1-Ren2 transgenic rats. JRAAS. 2006;7:74–86. PubMed

Erbanová M, Thumová M, Husková Z, Vaněčková I, Vaňourková Z, Mullins JJ, et al. Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2009;27:575–586. PubMed

Howard CG, Mitchell KD. Renal functional response to selective intrarenal renin inhibition in Cyp1a1-Ren-2 transgenic rats with ANG II-dependent malignant hypertension. Am J Physiol. 2012;302:F52–F59. PubMed PMC

Zicha J, Kuneš J, Vranková S, Jendeková L, Dobešová Z, Pintérová M, Pecháňová O. Influence of pertussion toxin pretreatment on the development of L-NAME-induced hypertension. Physiol Res. 2009;58:751–755. PubMed

Verhagen AMG, Braam B, Boer P, Grone HJ, Koomans HA, Joles JA. Losartan-sensitive renal damage caused by chronic NOS inhibition does not involve increased renal angiotensin II concentrations. Kidney Int. 1999;56:222–231. PubMed

Kujal P, Chabova VC, Vernerova Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, et al. Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol. 2010;37:1159–1169. PubMed

Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendations for blood pressure measurements in humans and experimental animals. Part 2: blood pressure measurements in experimental animals. Hypertension. 2005;45:299–310. PubMed

Sasser JM, Moningka NC, Tsarova T, Baylis C. Nebivolol does not protect against 5/6 ablation/infarction induced chronic kidney disease in rats – comparison with angiotensin II receptor blockade. Life Sci. 2012;91:54–63. PubMed PMC

Kopkan L, Hess A, Husková Z, Červenka L, Navar LG, Majid DSW. High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity. Am J Physiol. 2010;299:F656–F663. PubMed PMC

Kopkan L, Husková Z, Vaňourková Z, Thumová M, Škaroupková P, Červenka L, Majid DSW. Superoxide and its interaction with nitric oxide modulates renal function in prehypertensive Ren-2 transgenic rats. J Hypertens. 2007;25:2257–2265. PubMed

Čertíková Chábová V, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Kujal P, Vernerová Z, et al. Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats. Clin Sci. 2010;118:617–632. PubMed PMC

Nakano Y, Hirano T, Uehara K, Nishibayashi S, Hattori K, Aihara M, Yamada Y. New rat model induced by antiglomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progresss to end-stage renal failure. Pathol Int. 2008;58:361–370. PubMed

Vaněčková I, Kujal P, Husková Z, Vaňourková Z, Vernerová Z, Čertíková Chábová V, et al. Effects of combined endothelin A receptor and renin-angiotensin system blockade on the course of end-organ damage in 5/6 nephrectomized Ren-2 hypertensive rats. Kidney Blood Press Res. 2012;35:382–392. PubMed

Chin SY, Wang CT, Majid DSW, Navar LG. Renoprotective effects of nitric oxide in angiotensin II-induced hypertension in the rat. Am J Physiol. 1998;274:F876–F882. PubMed

Navar LG, Ichihara A, Chin SY, Imig JD. Nitric oxide-angiotensin II interactions in angiotensin II-dependent hypertension. Acta Physiol Scand. 2000;168:139–147. PubMed

Patterson ME, Mullins JJ, Mitchell KD. Renoprotective effects of neuronal NOS-derived nitric oxide and cyclooxygenase-2 metabolites in transgenic rats with inducible malignant hypertension. Am J Physiol. 2008;294:F205–F211. PubMed

Wilcox CS. L-Arginine-nitrix oxide pathway. In: Seldin DW, Giebisch G, editors. The kidney: physiology and pathophysiology. Philadelphia: Lippincott Williams & Wilkins; 2000. pp. 849–872.

Kone BC. Nitric oxide synthesis in the kidney:isoforms, biosynthesis, and functions in health. Semin Nephrol. 2004;24:299–315. PubMed

Madhun ZT, Goldthwait DA, McKay D, Hopfer U, Douglas JG. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J Clin Invest. 1991;88:456–461. PubMed PMC

Sakairi Y, Jacobson HR, Noland DT, Capdevila JH, Falck JR, Breyer MD. 5,6-EET inhibits ion transport in collecting duct by stimulating endogenous prostaglandin synthesis. Am J Physiol. 1995;268:F931–F939. PubMed

Zhao X, Yamamoto T, Newman JW, Kim IH, Watanabe T, Hammock BD, et al. Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. J Am Soc Nephrol. 2004;15:1244–1253. PubMed

Imig JD, Zhao X, Zaharis CZ, Olearczyk JJ, Pollock DM, Newman JW, et al. An orally active epoxide hydrolase inhibitor lowers blood pressure and provides renal protection in salt-sensitive hypertension. Hypertension. 2005;46:975–981. PubMed PMC

Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of kidney renin. Physiol Rev. 2010;90:607–673. PubMed

Hall JE, Brands MW. The renin-angiotensin-aldosterone system: renal mechanisms and circulatory homeostasis. In: Seldin DW, Giebisch G, editors. The kidney: physiology and pathophysiology. Philadelphia: Lippincott Williams & Wilkins; 2000. pp. 1009–1046.

Schweda F, Kurtz A. Regulation of renin release by local and systemic factors. Rev Physiol Biochem Pharmacol. 2011;161:1–44. PubMed

Zatz R, Baylis C. Chronic nitric oxide inhibition model six years on. Hypertension. 1998;32:958–964. PubMed PMC

Torok J. Participation of nitric oxide in different models of experimental hypertension. Physiol Res. 2008;57:813–825. PubMed

Kopkan L, Červenka L. Renal interactions of renin-angiotensin system, nitric oxide and superoxide anion: implications in the pathophysiology of salt-sensitivity and hypertension. Physiol Res. 2009;58(Suppl 2):S55–S57. PubMed

Zhou X, Frohlich ED. Differential effects of antihypertensive drugs on renal and glomerular hemodynamics and injury in the chronic nitrixoxide-suppressed rat. Am J Nephrol. 2005;25:138–152. PubMed

Ribeiro MO, Antune E, De Nucci G, Lovisolo SM, Zatz R. Chronic inhibition of nitric oxide synthesis: A new model of arterial hypertension. Hypertension. 1992;20:298–303. PubMed

Salazar FJ, Pinilla JM, López F, Romero JC, Quesada T. Renal effects of prolonged synthesis inhibition of endothelium-derived nitric oxide. Hypertension. 1992;20:113–117. PubMed

Jover B, Herizi A, Ventre F, Dupont M, Mimran A. Sodium and angiotensin in hypertension induced by long-term nitric oxide blockade. Hypertension. 1993;21:944–948. PubMed

Navarro-Cid J, Sanchez A, Sáiz J, Ruilope LM, García-Estaň J, Romero JC, et al. Hormonal, renal and metabolic alterations during hypertension induced by crhonic inhibition of NO in rats. Am J Physiol. 1994;267:R1516–R1521. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace