Antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats is mediated by suppression of the intrarenal renin-angiotensin system
Language English Country Australia Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
HL59699
NHLBI NIH HHS - United States
R01 HL059699
NHLBI NIH HHS - United States
P01 DK038226
NIDDK NIH HHS - United States
Howard Hughes Medical Institute - United States
P42 ES013933
NIEHS NIH HHS - United States
DK38226
NIDDK NIH HHS - United States
R01 ES02710
NIEHS NIH HHS - United States
R01 ES013933
NIEHS NIH HHS - United States
R01 ES002710
NIEHS NIH HHS - United States
PubMed
23039246
PubMed Central
PMC3769696
DOI
10.1111/1440-1681.12018
Knihovny.cz E-resources
- MeSH
- Antihypertensive Agents pharmacology MeSH
- Benzoates pharmacology MeSH
- Down-Regulation drug effects MeSH
- Epoxide Hydrolases antagonists & inhibitors MeSH
- Glomerular Filtration Rate drug effects MeSH
- Hypertension physiopathology MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Kidney drug effects metabolism MeSH
- Urea analogs & derivatives pharmacology MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Transgenic MeSH
- Renal Circulation drug effects MeSH
- Renin-Angiotensin System drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- 4-(4-(3-adamantan-1-ylureido)cyclohexyloxy)benzoic acid MeSH Browser
- Antihypertensive Agents MeSH
- Benzoates MeSH
- Epoxide Hydrolases MeSH
- Urea MeSH
The aim of the present study was to evaluate the hypothesis that the antihypertensive effects of inhibition of soluble epoxide hydrolase (sEH) are mediated by increased intrarenal availability of epoxyeicosatrienoic acids (EETs), with consequent improvement in renal haemodynamic autoregulatory efficiency and the pressure-natriuresis relationship. Ren-2 transgenic rats (TGR), a model of angiotensin (Ang) II-dependent hypertension, and normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats were treated with the sEH inhibitor cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy)benzoic acid (c-AUCB; 26 mg/L) for 48 h. Then, the effects on blood pressure (BP), autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR), and on the pressure-natriuresis relationship in response to stepwise reductions in renal arterial pressure (RAP) were determined. Treatment with c-AUCB did not significantly change BP, renal autoregulation or pressure-natriuresis in normotensive HanSD rats. In contrast, c-AUCB treatment significantly reduced BP, increased intrarenal bioavailability of EETs and significantly suppressed AngII levels in TGR. However, treatment with c-AUCB did not significantly improve the autoregulatory efficiency of RBF and GFR in response to reductions of RAP and to restore the blunted pressure-natriuresis relationship in TGR. Together, the data indicate that the antihypertensive actions of sEH inhibition in TGR are predominantly mediated via significant suppression of intrarenal renin-angiotensin system activity.
See more in PubMed
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 gene. Nature. 1990;344:541–544. PubMed
Husková Z, Kramer HJ, Vaňourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J. Hypertens. 2006;24:517–527. PubMed
Kujal P, Čertíková Chábová V, Vernerová Z, et al. Similar renoprotection after renin-angiotensin-dependent and –independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin. Exp. Pharmacol. Physiol. 2010;37:1159–1169. PubMed
Hartner A, Porst M, Klanke B, Cordasic N, Veelken R, Hilgers KF. Angiotensin II formation in the kidney and nephrosclerosis in Ren-2 hypertensive rats. Nephrol. Dial. Transplant. 2006;21:1778–1785. PubMed
Jacinto SM, Mullins JJ, Mitchell KD. Enhanced renal vascular responsiveness to angiotensin II in hypertensive ren-2 transgenic rats. Am. J. Physiol. 1999;276:F315–F322. PubMed
Kopkan L, Kramer HJ, Huskova Z, Vaňourková Z, Škaroupková P, Thumová M, Červenka L. The role of intrarenal angiotensin II in the development of hypertension in Ren-2 transgenic rats. J. Hypertens. 2005;23:1531–1539. PubMed
Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mRen2)27. Am. J. Physiol. 1990;270:E919–E929. PubMed
Kopkan L, Husková Z, Vaňourková Z, et al. Reduction of oxidative stress does not attenuate the development of angiotensin II-dependent hypertension in Ren-2 transgenic rats. Vascular. Pharmacol. 2009;51:175–181. PubMed
Kopkan L, Husková Z, Vanourková Z, Thumová M, Skaroupková P, Cervenka L, Majid DS. Superoxide and its interaction with nitric oxide modulates renal function in prehypertensive Ren-2 transgenic rats. J Hypertens. 2007;25:2257–2265. 2007. PubMed
Vernerová Z, Kujal P, Kramer HJ, Bäcker A, Červenka L, Vaněčková I. End-organ damage in hypertensive transgenic Ren-2 rats: influence of early and late endothelin receptor blockade. Physiol. Res. 2009;58(Suppl 2):S69–S78. PubMed
Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent response. Pfugers. Arch. 2010;459:881–895. PubMed PMC
Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 2002;82:131–185. PubMed
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev. 2012;92:101–130. PubMed PMC
Imig JD, Zhao X, Falck JR, Wei S, Capdevila JH. Enhanced renal mircovascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid. J. Hypertens. 2001;19:983–992. PubMed
Lee CR, Imig JD, Edin ML, et al. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. FASEB. J. 2010;24:3770–3781. PubMed PMC
Honetschlägerová Z, Husková Z, Vaňourková Z, et al. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J. Physiol. 2011;589:207–219. PubMed PMC
Honetschlägerová Z, Sporková A, Kopkan L, et al. Inhibition of soluble epoxide hydrolyse improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 2011;29:1590–1601. PubMed PMC
Sporková A, Kopkan L, Varcabová Š, et al. Role of cytochrome P450 metabolites in the regulation of renal function and blood pressure in 2-kidney, 1-clip hypertensive rats. Am. J. Physiol. 2011;300:R1468–R1475. PubMed PMC
Springate J, Van Liew J, Ganten D. Enalapril and pressure-diuresis in hypertensive rats transgenic for mouse renin gene. Kidney. Blood. Press. Res. 1997;20:1–5. PubMed
Lippoldt A, Gross V, Bohlender J, Ganten U, Luft FC. Lifelong angiotensin-converting enzyme inhibition, pressure natriuresis, and renin-angiotensin system gene expression in transgenic (mRen-2)27 rats. J. Am. Soc. Nephrol. 1996;7:2119–2129. PubMed
Neckář J, Kopkan L, Husková Z, et al. Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin. Sci. 2012;122:513–525. PubMed PMC
Cervenka L, Wang CT, Navar LG. Effects of acute AT1 receptor blockade by candesartanu on arterial pressure and renal function in rats. Am. J. Physiol. 1998;274:F940–F945. PubMed
Wang CT, Chin SY, Navar LG. Impairment of pressure-natriuresis and renal autoregulation in ANG II-infused hypertensive rats. Am J Physiol. 2000;279:F319–F325. PubMed
Erbanová M, Thumová M, Husková Z, et al. Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 2009;27:575–586. PubMed
Semple SJ, de Wardener HE. Effect of increased renal venous pressure on circulatory autoregulation of isolated dog kidneys. Circ. Res. 1959;7:643–648. PubMed
Husková Z, Kramer HJ, Thumová M, Vaňourková Z, Bürgelová M, Teplan V, Červenka L. Effects of anaesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press Res. 2006;29:74–83. PubMed
Walkowska A, Škaroupková P, Husková Z, et al. Intrarenal cytochrome P-450 metabolites of arachidonic acid in the regulation of the nonclipped kidney function in two-kidney, one-clip Goldblatt hypertensive rats. J. Hypertens. 2010;28:582–593. PubMed PMC
Li PL, Campbell WB. Regulation of potassium channels in coronary smooth muscle through a guanine nucleotide binding protein. Circ. Res. 1997;80:877–884. PubMed
Wang D, Borrego-Conde LJ, Falck JR, Sharma KK, Wilcox CS, Umans JG. Contribution of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles. Kidney. Int. 2003;63:2187–2193. PubMed
Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ. Res. 1996;78:415–423. PubMed
Kohagure K, Endo Y, Ito O, Arima S, Omata K, Ito S. Endogenous nitric oxide and epoxyeicosatrienoic acids modulate angiotensin II-induced constriction in the rabbit afferent arteriole. Acta. Physiol. Scand. 2000;168:107–112. PubMed
Madhun ZT, Goldthwait DA, McKay D, Hopfer U, Douglas JG. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J. Clin. Invest. 1991;88:456–461. PubMed PMC
Sakairi Y, Jacobson HR, Noland DT, Capdevila JH, Falck JR, Breyer MD. 5,6-EET inhibits ion transport in collecting duct by stimulating endogenous prostaglandin synthesis. Am. J. Physiol. 1995;268:F931–F939. PubMed
Imig JD, Falck JR, Inscho EW. Contribution of cytochrome P450 epoxygenase and hydroxylase pathways to afferent arteriolar autoregulatory responsiveness. Br. J. Pharmacol. 1999;127:1399–1405. PubMed PMC
Guyton AC, Hall JE, Coleman TG, Manning RD., Jr. The dominant role of the kidneys in the long term regulation of arterial pressure in normal and hypertensive states. In: Laragh JH, Brenner BM, editors. Hypertension: Pathophysiology, Diagnosis and Management. Raven Press, Publishers; New York, NY: 1990. pp. 1029–1052.
Roman RJ, Cowley AW., Jr. Abnormal pressure-diuresis-natriuresis response in spontaneously hypertensive rats. Am J Physiol. 1985;248:F199–F205. PubMed
Miao CY, Liu KL, Benzoni D, Sassard J. Acute pressure-natriuresis function shows early impairment in Lyon hypertensive rats. J. Hypertens. 2005;23:1225–1231. PubMed
Van der Mark J, Kline RL. Altered pressure natriuresis in chronic angiotensin II hypertension in rats. Am. J. Physiol. 1994;266:F739–F748. PubMed
Hall JE, Mizelle HL, Brands MV, Hildebrandt DA. Pressure natriuresis and angiotensin II in reduced kidney mass, salt-induced hypertension. Am. J. Physiol. 1992;262:R61–R71. PubMed
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol. Rev. 2007;59:251–287. PubMed
Kline RL, Liu F. Modification of pressure natriuresis by long-term losartan in spontaneously hypertensive rats. Hypertension. 1994;24:467–473. PubMed
Vaněčková I, Dobešová Z, Kuneš J, Zicha J. The effects of repeated delivery of angiotensin II AT1 receptor antisense on distinct vasoactive systems in Ren-2 transgenic rats: young vs. adult animals. Hypertens. Res. 2012 doi: 10.1038/hr2012.39. PubMed
Henrich WL, Falck JR, Campbell WB. Inhibition of renin release by 14,15-epoxyeicosatrienoic acid in renal cortical slices. Am. J. Physiol. 1990;258:E269–E274. PubMed
Bohlender J, Ménard J, Edling O, Ganten D, Luft FC. Mouse and rat plasma renin concentration and gene expression in (mRen2)27 transgenic rats. Am. J. Physiol. 1998;274:H1450–H1456. PubMed
Červenka L, Vaněčková I, Husková Z, Vaňourková Z, Erbanová M, Thumová M, Škaroupková P, Opočenský M, Malý J, Čertíková Chábová V, Tesař V, Burgelova M, Viklický O, Teplan V, Želízko M, Kramer HJ, Navar LG. Pivotal role of angiotensin II receptor subtype 1A in the development of two-kidney, one-clip hypertension: study in angiotensin II receptor subtype 1A knockout mice. J. Hypertens. 2008;26:1379–1389. PubMed PMC
Welch WJ. Angiotensin II-dependent superoxide. Effects on hypertension and vascular dysfunction. Hypertension. 2008;52:51–56. PubMed PMC
Epoxyeicosanoids in hypertension