Pivotal role of angiotensin II receptor subtype 1A in the development of two-kidney, one-clip hypertension: study in angiotensin II receptor subtype 1A knockout mice
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 GM103337
NIGMS NIH HHS - United States
R01 HL026371
NHLBI NIH HHS - United States
R01 HL026371-26
NHLBI NIH HHS - United States
HL 26371
NHLBI NIH HHS - United States
PubMed
18551014
PubMed Central
PMC2704388
DOI
10.1097/hjh.0b013e3282fe6eaa
PII: 00004872-200807000-00019
Knihovny.cz E-zdroje
- MeSH
- arteria renalis MeSH
- hypertenze genetika patofyziologie MeSH
- ligace MeSH
- modely nemocí na zvířatech MeSH
- myši knockoutované MeSH
- myši MeSH
- receptor angiotensinu typ 1 genetika fyziologie MeSH
- receptor angiotensinu typ 2 genetika fyziologie MeSH
- renin-angiotensin systém fyziologie MeSH
- synthasa oxidu dusnatého fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- receptor angiotensinu typ 1 MeSH
- receptor angiotensinu typ 2 MeSH
- synthasa oxidu dusnatého MeSH
OBJECTIVE: The present study was performed to examine in two-kidney, one-clip (2K1C) Goldblatt hypertensive mice: first, the relative contribution of angiotensin II receptor subtypes 1A (AT(1A)) and 1B (AT(1B)); second, the role of angiotensin II type 2 (AT(2)) receptors in the development of hypertension in wild-type (AT(1A)+/+) and AT(1A) receptor knockout (AT(1A)-/-) mice; and third, the role of increased nitric oxide synthase activity in counteracting the hypertensinogenic action of angiotensin II in this model. METHODS: AT(1A)+/+ and AT(1A)-/- mice underwent clipping of one renal artery and were infused with either saline vehicle or selective AT(2) receptor agonist CGP-42112A (CGP). Blood pressure was monitored by radiotelemetry. Blood pressure responses to the nitric oxide synthase inhibitor nitro-L-arginine-methyl-ester were evaluated. RESULTS: AT(1A)+/+ mice responded to clipping by a rise in blood pressure that was not modified by CGP infusion. Clip placement caused a slight increase in blood pressure in AT(1A)-/- mice that remained significantly lower than in AT(1A)+/+ mice. Acute nitric oxide synthase inhibition caused greater increase in blood pressure in 2K1C/AT(1A)+/+ than in AT(1A)+/+ mice. CONCLUSION: The present data support the critical role of AT(1A) receptors in the development of 2K1C hypertension, whereas AT(1B) receptors play only a minor role in blood pressure regulation in this model of angiotensin II-dependent hypertension. Activation of AT(2) receptors does not play an antagonistic role in the AT(1) receptor-mediated hypertensinogenic actions of angiotensin II in this model. Finally, enhanced nitric oxide synthase activity plays a protective role by counteracting the vasoconstrictor influences of angiotensin II in 2K1C hypertensive mice.
Zobrazit více v PubMed
Navar LG, Zou L, Von Thun A, Wang CT, Imig JD, Mitchell KD. Unraveling the mystery of Goldblatt hypertension. News Physiol Sci. 1998;13:170–176. PubMed
Cervenka L, Wang CT, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension. 1999;33:102–107. PubMed
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–287. PubMed
Ingert C, Grima M, Coquard C, Barthelmers M, Imbs JL. Contribution of angiotensin II internalization to intrarenal angiotensin II levels in rats. Am J Physiol. 2002;283:F1003–F1010. PubMed
Navar LG, Nishiyama A. Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens. 2004;13:107–115. PubMed
Sasamura H, Hein L, Krieger J, Prattt R, Kobilka B, Dzau V. Cloning characterization and expression of 2 angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem Biophys Res Commun. 1992;185:253–259. PubMed
Crowley SD, Tharaux PL, Audoly LP, Coffman TM. Exploring type I angiotensin (AT1) receptor functions through gene targeting. Acta Physiol Scand. 2004;181:561–570. PubMed
Červenka L, Horáček V, Vanéčkova I, Hubáček JA, Oliverio MI, Coffman TM, Navar LG. Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension. 2002;40:735–741. PubMed
Oliverio MI, Best CF, Kim HS, Arendshorst WJ, Smithies O, Coffman TM. Angiotensin II responses in AT1A receptor-deficient mice: a role for AT1B receptors in blood pressure regulation. Am J Physiol. 1997;272:F515–F520. PubMed
Zhu Z, Zhang SH, Wagner C, Kurtz A, Maeda N, Coffman TM, Arendshorst WJ. Angiotensin AT1B receptor mediates calcium signaling in vascular smooth muscle cells of AT1A receptor-deficient mice. Hypertension. 1998;31:1171–1177. PubMed
Ruan X, Purdy KE, Oliverio MI, Coffman TM, Arendshorst WJ. Effects of candesartan on angiotensin II-induced renal vasoconstriction in rats and mice. J Am Soc Nephrol. 1999;10:S202–S207. PubMed
Harrison-Bernard LM, Cook AK, Oliverio MI, Coffman TM. Renal segmental microvascular responses to ANG II in AT1A receptor null mice. Am J Physiol. 2003;284:F538–F545. PubMed
Li XC, Navar LG, Shao Y, Zhuo JL. Genetic deletion of AT1A receptors attenuates intracellular accumulation of ANG II in the kidney of AT1A receptor-deficient mice. Am J Physiol. 2007;293:F586–F593. PubMed PMC
Carey RM, Howell NL, Jin XH, Siragy HM. Angiotensin type 2 receptor-mediated hypotension in angiotensin type-1 receptor-blocked rats. Hypertension. 2001;38:1272–1277. PubMed
Widdop RE, Matrougui K, Levy BI, Henrion D. AT2 receptor-mediated relaxation is preserved after long-term AT1 receptor blockade. Hypertension. 2002;40:516–520. PubMed
Li XC, Widdop RE. AT2 receptor mediated vasodilatation is unmasked by AT1 receptor blockade in conscious SHR. Br J Pharmacol. 2004;142:821–830. PubMed PMC
Padia SH, Howell NL, Siragy HM, Carey RM. Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor-blocked rat. Hypertension. 2006;47:537–544. PubMed
Sigmon DH, Beierwaltes WH. Renal nitric oxide and angiotensin II interaction in renovascular hypertension. Hypertension. 1993;22:237–242. PubMed
Chin SY, Wang CT, Majid DSA, Navar LG. Renoprotective effects of nitric oxide in angiotensin II-induced hypertension in the rat. Am J Physiol. 1998;274:F876–F882. PubMed
Navar LG, Ichihara A, Chin SY, Imig JD. Nitric oxide-angiotensin II interactions in angiotensin II-dependent hypertension. Acta Physiol Scand. 2000;168:139–147. PubMed
Mitchell KD, Botros FT, Navar LG. Intrarenal renin-angiotensin system and counteracting protective mechanisms in angiotensin II-dependent hypertension. Acta Physiol Hung. 2007;94:31–48. PubMed
Hitomi H, Kiyomoto H, Nishiyama A. Angiotensin II and oxidative stress. Curr Opin Cardiol. 2007:311–315. PubMed
Reckelhoff JF, Romero JC. Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol. 2003;284:R893–R912. PubMed
Kawada N, Imai E, Karber A, Welch W, Wilcox CS. A mouse model of angiotensin II slow pressor response: role of oxidative stress. J Am Soc Nephrol. 2002;13:2860–2868. PubMed
Oliverio MI, Best CF, Smithies O, Coffman TM. Regulation of sodium balance and blood pressure by the AT1A receptor for angiotensin II. Hypertension. 2000;35:550–554. PubMed
Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendations for blood pressure measurements in humans and experimental animals. Part 2: Blood pressure measurements in experimental animals. Hypertension. 2005;45:299–310. PubMed
Whitesall SE, Hoff JB, Vollmer AP, D’Alecy LG. Comparison of simultaneous measurements of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods. Am J Physiol. 2004;286:H2408–H2415. PubMed
Červenka L, Vanéčkova I, Malý J, Horáček V, El-Dahr SS. Genetic inactivation of the B2 receptor in mice worsens two-kidney, one-clip hypertension: role of NO and the AT2 receptor. J Hypertens. 2003;21:1531–1538. PubMed
Husková Z, Kramer HJ, Thumová M, Vaňourková Z, Bürgelová M, Teplan V, Červenka L. Effects of anaesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press Res. 2006;29:74–83. PubMed
Fox J, Guan S, Hymel AA, Navar LG. Dietary Na and ACE inhibition effects on renal tissue angiotensin I and II and ACE activity in rats. Am J Physiol. 1992;262:F902–F909. PubMed
Navar LG, Lewis L, Hymel A, Braam B, Mitchell KD. Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J Am Soc Nephrol. 1994;5:1153–1158. PubMed
Kopkan L, Kramer HJ, Huskova Z, Vaňourková Z, Škaroupková P, Thumová M, et al. The role of intrarenal angiotensin II in the development of hypertension in Ren-2 transgenic rats. J Hypertens. 2005;23:1531–1539. PubMed
Vaňourková Z, Kramer HJ, Husková Z, Vanéčková I, Opočenský O, Čertíková Chábová V, et al. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens. 2006:2465–2472. PubMed
Huskova Z, Kramer HJ, Vaňourková Z, Thumová M, Malý J, Opočenský M, et al. Effects of dietary salt load and salt depletion on the course of hypertension and angiotensin II levels in male and female heterozygous Ren-2 transgenic rats. Kidney Blood Press Res. 2007;30:45–55. PubMed
Macari D, Whitebread S, Cumin F, De Gasparo M, Levens N. Renal actins of the angiotensin AT2 receptor ligands CGP 4211B and PD 123319 after blockade of the renin-angiotensin system. Eur J Pharmacol. 1994;259:27–36. PubMed
Harrison-Bernard LM, Monjure CJ, Bivona BJ. Efferent arterioles exclusively express the subtype 1A angiotensin receptor: functional insights from genetic mouse models. Am J Physiol. 2006;290:F1177–F1186. PubMed
Park S, Bivona BJ, Harrison-Bernard LM. Compromised renal microvascular reactivity of angiotensin type 1 double null mice. Am J Physiol. 2007;293:F60–F67. PubMed
Swafford AN, Harrison-Bernard LM, Dick GM. Knockout mice reveal that the angiotensin II type 1B receptor links to smooth muscle contraction. Am J Hypertens. 2007;20:335–337. PubMed
Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. 2006;103:17985–17990. PubMed PMC
Ruiz-Ortega M, Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Carjal G, Egido J. Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nehrol Hypertens. 2006;15:159–166. PubMed
Fleming I, Kohlstedt K, Busse R. The tissue renin-angiotensin system and intracellular signaling. Curr Opin Nehrol Hypertens. 2006;15:8–13. PubMed
Siragy HM, Xue C, Abadir P, Carey RM. Angiotensin subtype-2 receptors inhibit renin biosynthesis and angiotensin II formation. Hypertension. 2005;45:133–137. PubMed
Chin SY, Pandey KN, Shi SJ, Kobori H, Moreno C, Navar LG. Increased activity and protein expression of calcium-dependent nitric oxide synthases in the renal cortex of angiotensin II-infused hypertensive rats. Am J Physiol. 1999;277:F797–F804. PubMed PMC
Patzak A, Lai EY, Mrowka R, Steege A, Persson PB, Persson EG. AT1 receptors mediate angiotensin II-induced release of nitric oxide in afferent arterioles. Kidney Int. 2004;66:1949–1958. PubMed
Hiyoshi H, Yayama K, Takano M, Okamoto H. Angiotensin type 2 receptor-mediated phosphorylation of eNOS in the aortas of mice with 2-kidney, 1-clip hypertension. Hypertension. 2005;45:967–973. PubMed
Research on Experimental Hypertension in Prague (1966-2009)