Pivotal role of angiotensin II receptor subtype 1A in the development of two-kidney, one-clip hypertension: study in angiotensin II receptor subtype 1A knockout mice

. 2008 Jul ; 26 (7) : 1379-89.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18551014

Grantová podpora
P30 GM103337 NIGMS NIH HHS - United States
R01 HL026371 NHLBI NIH HHS - United States
R01 HL026371-26 NHLBI NIH HHS - United States
HL 26371 NHLBI NIH HHS - United States

Odkazy

PubMed 18551014
PubMed Central PMC2704388
DOI 10.1097/hjh.0b013e3282fe6eaa
PII: 00004872-200807000-00019
Knihovny.cz E-zdroje

OBJECTIVE: The present study was performed to examine in two-kidney, one-clip (2K1C) Goldblatt hypertensive mice: first, the relative contribution of angiotensin II receptor subtypes 1A (AT(1A)) and 1B (AT(1B)); second, the role of angiotensin II type 2 (AT(2)) receptors in the development of hypertension in wild-type (AT(1A)+/+) and AT(1A) receptor knockout (AT(1A)-/-) mice; and third, the role of increased nitric oxide synthase activity in counteracting the hypertensinogenic action of angiotensin II in this model. METHODS: AT(1A)+/+ and AT(1A)-/- mice underwent clipping of one renal artery and were infused with either saline vehicle or selective AT(2) receptor agonist CGP-42112A (CGP). Blood pressure was monitored by radiotelemetry. Blood pressure responses to the nitric oxide synthase inhibitor nitro-L-arginine-methyl-ester were evaluated. RESULTS: AT(1A)+/+ mice responded to clipping by a rise in blood pressure that was not modified by CGP infusion. Clip placement caused a slight increase in blood pressure in AT(1A)-/- mice that remained significantly lower than in AT(1A)+/+ mice. Acute nitric oxide synthase inhibition caused greater increase in blood pressure in 2K1C/AT(1A)+/+ than in AT(1A)+/+ mice. CONCLUSION: The present data support the critical role of AT(1A) receptors in the development of 2K1C hypertension, whereas AT(1B) receptors play only a minor role in blood pressure regulation in this model of angiotensin II-dependent hypertension. Activation of AT(2) receptors does not play an antagonistic role in the AT(1) receptor-mediated hypertensinogenic actions of angiotensin II in this model. Finally, enhanced nitric oxide synthase activity plays a protective role by counteracting the vasoconstrictor influences of angiotensin II in 2K1C hypertensive mice.

Zobrazit více v PubMed

Navar LG, Zou L, Von Thun A, Wang CT, Imig JD, Mitchell KD. Unraveling the mystery of Goldblatt hypertension. News Physiol Sci. 1998;13:170–176. PubMed

Cervenka L, Wang CT, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension. 1999;33:102–107. PubMed

Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–287. PubMed

Ingert C, Grima M, Coquard C, Barthelmers M, Imbs JL. Contribution of angiotensin II internalization to intrarenal angiotensin II levels in rats. Am J Physiol. 2002;283:F1003–F1010. PubMed

Navar LG, Nishiyama A. Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens. 2004;13:107–115. PubMed

Sasamura H, Hein L, Krieger J, Prattt R, Kobilka B, Dzau V. Cloning characterization and expression of 2 angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem Biophys Res Commun. 1992;185:253–259. PubMed

Crowley SD, Tharaux PL, Audoly LP, Coffman TM. Exploring type I angiotensin (AT1) receptor functions through gene targeting. Acta Physiol Scand. 2004;181:561–570. PubMed

Červenka L, Horáček V, Vanéčkova I, Hubáček JA, Oliverio MI, Coffman TM, Navar LG. Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension. 2002;40:735–741. PubMed

Oliverio MI, Best CF, Kim HS, Arendshorst WJ, Smithies O, Coffman TM. Angiotensin II responses in AT1A receptor-deficient mice: a role for AT1B receptors in blood pressure regulation. Am J Physiol. 1997;272:F515–F520. PubMed

Zhu Z, Zhang SH, Wagner C, Kurtz A, Maeda N, Coffman TM, Arendshorst WJ. Angiotensin AT1B receptor mediates calcium signaling in vascular smooth muscle cells of AT1A receptor-deficient mice. Hypertension. 1998;31:1171–1177. PubMed

Ruan X, Purdy KE, Oliverio MI, Coffman TM, Arendshorst WJ. Effects of candesartan on angiotensin II-induced renal vasoconstriction in rats and mice. J Am Soc Nephrol. 1999;10:S202–S207. PubMed

Harrison-Bernard LM, Cook AK, Oliverio MI, Coffman TM. Renal segmental microvascular responses to ANG II in AT1A receptor null mice. Am J Physiol. 2003;284:F538–F545. PubMed

Li XC, Navar LG, Shao Y, Zhuo JL. Genetic deletion of AT1A receptors attenuates intracellular accumulation of ANG II in the kidney of AT1A receptor-deficient mice. Am J Physiol. 2007;293:F586–F593. PubMed PMC

Carey RM, Howell NL, Jin XH, Siragy HM. Angiotensin type 2 receptor-mediated hypotension in angiotensin type-1 receptor-blocked rats. Hypertension. 2001;38:1272–1277. PubMed

Widdop RE, Matrougui K, Levy BI, Henrion D. AT2 receptor-mediated relaxation is preserved after long-term AT1 receptor blockade. Hypertension. 2002;40:516–520. PubMed

Li XC, Widdop RE. AT2 receptor mediated vasodilatation is unmasked by AT1 receptor blockade in conscious SHR. Br J Pharmacol. 2004;142:821–830. PubMed PMC

Padia SH, Howell NL, Siragy HM, Carey RM. Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor-blocked rat. Hypertension. 2006;47:537–544. PubMed

Sigmon DH, Beierwaltes WH. Renal nitric oxide and angiotensin II interaction in renovascular hypertension. Hypertension. 1993;22:237–242. PubMed

Chin SY, Wang CT, Majid DSA, Navar LG. Renoprotective effects of nitric oxide in angiotensin II-induced hypertension in the rat. Am J Physiol. 1998;274:F876–F882. PubMed

Navar LG, Ichihara A, Chin SY, Imig JD. Nitric oxide-angiotensin II interactions in angiotensin II-dependent hypertension. Acta Physiol Scand. 2000;168:139–147. PubMed

Mitchell KD, Botros FT, Navar LG. Intrarenal renin-angiotensin system and counteracting protective mechanisms in angiotensin II-dependent hypertension. Acta Physiol Hung. 2007;94:31–48. PubMed

Hitomi H, Kiyomoto H, Nishiyama A. Angiotensin II and oxidative stress. Curr Opin Cardiol. 2007:311–315. PubMed

Reckelhoff JF, Romero JC. Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol. 2003;284:R893–R912. PubMed

Kawada N, Imai E, Karber A, Welch W, Wilcox CS. A mouse model of angiotensin II slow pressor response: role of oxidative stress. J Am Soc Nephrol. 2002;13:2860–2868. PubMed

Oliverio MI, Best CF, Smithies O, Coffman TM. Regulation of sodium balance and blood pressure by the AT1A receptor for angiotensin II. Hypertension. 2000;35:550–554. PubMed

Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendations for blood pressure measurements in humans and experimental animals. Part 2: Blood pressure measurements in experimental animals. Hypertension. 2005;45:299–310. PubMed

Whitesall SE, Hoff JB, Vollmer AP, D’Alecy LG. Comparison of simultaneous measurements of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods. Am J Physiol. 2004;286:H2408–H2415. PubMed

Červenka L, Vanéčkova I, Malý J, Horáček V, El-Dahr SS. Genetic inactivation of the B2 receptor in mice worsens two-kidney, one-clip hypertension: role of NO and the AT2 receptor. J Hypertens. 2003;21:1531–1538. PubMed

Husková Z, Kramer HJ, Thumová M, Vaňourková Z, Bürgelová M, Teplan V, Červenka L. Effects of anaesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press Res. 2006;29:74–83. PubMed

Fox J, Guan S, Hymel AA, Navar LG. Dietary Na and ACE inhibition effects on renal tissue angiotensin I and II and ACE activity in rats. Am J Physiol. 1992;262:F902–F909. PubMed

Navar LG, Lewis L, Hymel A, Braam B, Mitchell KD. Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J Am Soc Nephrol. 1994;5:1153–1158. PubMed

Kopkan L, Kramer HJ, Huskova Z, Vaňourková Z, Škaroupková P, Thumová M, et al. The role of intrarenal angiotensin II in the development of hypertension in Ren-2 transgenic rats. J Hypertens. 2005;23:1531–1539. PubMed

Vaňourková Z, Kramer HJ, Husková Z, Vanéčková I, Opočenský O, Čertíková Chábová V, et al. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens. 2006:2465–2472. PubMed

Huskova Z, Kramer HJ, Vaňourková Z, Thumová M, Malý J, Opočenský M, et al. Effects of dietary salt load and salt depletion on the course of hypertension and angiotensin II levels in male and female heterozygous Ren-2 transgenic rats. Kidney Blood Press Res. 2007;30:45–55. PubMed

Macari D, Whitebread S, Cumin F, De Gasparo M, Levens N. Renal actins of the angiotensin AT2 receptor ligands CGP 4211B and PD 123319 after blockade of the renin-angiotensin system. Eur J Pharmacol. 1994;259:27–36. PubMed

Harrison-Bernard LM, Monjure CJ, Bivona BJ. Efferent arterioles exclusively express the subtype 1A angiotensin receptor: functional insights from genetic mouse models. Am J Physiol. 2006;290:F1177–F1186. PubMed

Park S, Bivona BJ, Harrison-Bernard LM. Compromised renal microvascular reactivity of angiotensin type 1 double null mice. Am J Physiol. 2007;293:F60–F67. PubMed

Swafford AN, Harrison-Bernard LM, Dick GM. Knockout mice reveal that the angiotensin II type 1B receptor links to smooth muscle contraction. Am J Hypertens. 2007;20:335–337. PubMed

Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. 2006;103:17985–17990. PubMed PMC

Ruiz-Ortega M, Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Carjal G, Egido J. Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nehrol Hypertens. 2006;15:159–166. PubMed

Fleming I, Kohlstedt K, Busse R. The tissue renin-angiotensin system and intracellular signaling. Curr Opin Nehrol Hypertens. 2006;15:8–13. PubMed

Siragy HM, Xue C, Abadir P, Carey RM. Angiotensin subtype-2 receptors inhibit renin biosynthesis and angiotensin II formation. Hypertension. 2005;45:133–137. PubMed

Chin SY, Pandey KN, Shi SJ, Kobori H, Moreno C, Navar LG. Increased activity and protein expression of calcium-dependent nitric oxide synthases in the renal cortex of angiotensin II-infused hypertensive rats. Am J Physiol. 1999;277:F797–F804. PubMed PMC

Patzak A, Lai EY, Mrowka R, Steege A, Persson PB, Persson EG. AT1 receptors mediate angiotensin II-induced release of nitric oxide in afferent arterioles. Kidney Int. 2004;66:1949–1958. PubMed

Hiyoshi H, Yayama K, Takano M, Okamoto H. Angiotensin type 2 receptor-mediated phosphorylation of eNOS in the aortas of mice with 2-kidney, 1-clip hypertension. Hypertension. 2005;45:967–973. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Research on Experimental Hypertension in Prague (1966-2009)

. 2024 Aug 31 ; 73 (Suppl 1) : S49-S66. [epub] 20240717

Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats

. 2021 Nov 30 ; 9 (12) : . [epub] 20211130

Contribution of selected vasoactive systems to blood pressure regulation in two models of chronic kidney disease

. 2020 Jul 16 ; 69 (3) : 405-414. [epub] 20200529

Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive Rats' Exhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids

. 2016 May ; 351 (5) : 513-9. [epub] 20160223

Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats

. 2014 Mar ; 41 (3) : 227-37.

Antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats is mediated by suppression of the intrarenal renin-angiotensin system

. 2013 Apr ; 40 (4) : 273-81.

Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide in mice with renovascular hypertension

. 2012 ; 35 (6) : 595-607. [epub] 20120829

Role of cytochrome P-450 metabolites in the regulation of renal function and blood pressure in 2-kidney 1-clip hypertensive rats

. 2011 Jun ; 300 (6) : R1468-75. [epub] 20110316

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...