Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive Rats' Exhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids

. 2016 May ; 351 (5) : 513-9. [epub] 20160223

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27140711

Grantová podpora
P01 DK038226 NIDDK NIH HHS - United States
R01 HL111392 NHLBI NIH HHS - United States

Odkazy

PubMed 27140711
PubMed Central PMC5021442
DOI 10.1016/j.amjms.2016.02.030
PII: S0002-9629(16)00205-6
Knihovny.cz E-zdroje

BACKGROUND: Small renal arteries have a significant role in the regulation of renal hemodynamics and blood pressure (BP). To study potential changes in the regulation of vascular function in hypertension, we examined renal vasodilatory responses of small arteries from nonclipped kidneys of the 2-kidney, 1-clip Goldblatt hypertensive rats to native epoxyeicosatrienoic acids (EETs) that are believed to be involved in the regulation of renal vascular function and BP. A total of 2 newly synthesized EET analogues were also examined. MATERIALS AND METHODS: Renal interlobular arteries isolated from the nonclipped kidneys on day 28 after clipping were preconstricted with phenylephrine, pressurized and the effects of a 14,15-EET analogue, native 14,15-EET and 11,12-ether-EET-8ZE, an analogue of 11,12-EET, on the vascular diameter were determined and compared to the responses of arteries from the kidneys of sham-operated rats. RESULTS: In the arteries from nonclipped kidneys isolated in the maintenance phase of Goldblatt hypertension, the maximal vasodilatory response to 14,15-EET analogue was 30.1 ± 2.8% versus 49.8 ± 7.2% in sham-operated rats; the respective values for 11,12-ther-EET-8ZE were 31.4 ± 6.4% versus 80.4 ± 6%, and for native EETs they were 41.7 ± 6.6% versus 62.8 ± 4.4% (P ≤ 0.05 for each difference). CONCLUSIONS: We propose that reduced vasodilatory action and decreased intrarenal bioavailability of EETs combined with intrarenal angiotensin II levels that are inappropriately high for hypertensive rats underlie functional derangements of the nonclipped kidneys of 2-kidney, 1-clip Goldblatt hypertensive rats. These derangements could play an important role in pathophysiology of sustained BP elevation observed in this animal model of human renovascular hypertension.

Zobrazit více v PubMed

Ploth DW. Angiotensin-dependent renal mechanism in two-kidney, one-clip renal vascular hypertension. Am J Physiol. 1983;245:F131–F141. PubMed

Navar LG, Zou L, Von Thun A, Wang CT, Imig JD, Mitchell KD. Unraveling the mystery of Goldblatt hypertension. News Physiol Sci. 1998;13:170–176. PubMed

Guan S, Fox K, Mitchell, Navar LG. Angiotensin and angiotensin converting enzyme tissue levels in two-kidney, one-clip hypertensive rats. Hypertension. 1992;20:763–767. PubMed

El-Dahr SS, Dipp S, Guan S, Navar LG. Renin, angiotensinogen, and kallikrein gene expression in two-kidney Goldblatt hypertensive rats. Am J Hypertens. 1993;6:914–919. PubMed

Cervenka L, Wang CT, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension. 1999;33:102–107. PubMed

Červenka L, Vaněčková I, Husková Z, Vaňourková Z, Erbanová M, Thumová M, Škaroupková P, Opočenský M, Malý J, Čertíková Chábová V, Tesař V, Bürgelová M, Viklický O, Teplan V, Želízko M, Kramer HJ, Navar LG. Pivotal role of AT1A receptors in the development of two-kidney, one-clip hypertension: study in AT1A receptor knockout mice. J Hypertens. 2008;26:1379–1389. PubMed PMC

Walkowska A, Škaroupková P, Husková Z, Vaňourková Z, Čertíková Chábová V, Tesař V, Kramer HJ, Falck JR, Imig JD, Kompanovska-Jezierska E, Sadowski J, Červenka L. Intrarenal cytochrome P-450 metabolites of arachidonic acid in the regulation of the nonclipped kidney function in two-kidney, one-clip Goldblatt hypertensive rats. J Hypertens. 2010;28:582–593. PubMed PMC

Mitchell KD, Botros FT, Navar LG. Intrarenal renin-angiotensin system and counteracting protective mechanisms in angiotensin II-dependent hypertension. Acta Physiologica Hungarica. 2007;94:31–48. PubMed

Rakušan D, Bürgelová M, Vaněčková I, Vaňourková Z, Husková Z, Škaroupková P, Mrázová I, Opočenský M, Kramer HJ, Netuka I, Malý J, Alenina N, Bader M, Santos RAS, Červenka L. Knockout of angiotensin 1-7 receptor mas worsens the course of two-kidney, one-clip Goldblatt hypertension: roles of nitric oxide deficiency and enhanced vascular responsiveness to angiotensin II. Kidney and Blood Press Res. 2010;33:476–488. PubMed

Sporkova A, Kopkan L, Varcabová A, Husková Z, Hwang SH, Hammock BD, Imig JD, Kramer HJ, Červenka L. Role of cytochrome P450 metabolites in the regulation of renal function and blood pressure in 2-kidney, 1-clip hypertensive rats. Am J Physiol. 2011;300:R1468–R1475. PubMed PMC

Kopkan L, Husková Z, Sporková A, Varcabová Š, Honetschlägerová Z, Hwang SH, Tsai HJ, Hammock BD, Imig JD, Kramer HJ, Bürgelová M, Vojtíšková A, Kujal P, Vernerová Z, Červenka L. Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently on nitric oxide in mice with renovascular hypertension. Kidney and Blood Press Res. 2012;35:595–607. PubMed PMC

Archer SL, Gragasin FS, Xichen W, Wang S, McMurtry, Kim DH, Platonov M, Koshal A, Hashimoto Kyoko, BSc, William B, Campbell WB, Falck JR, Michelakis ED. Endothelium-derived hyperpolarizing factor in human mammary artery is 11,12-Epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKca channels. Circulation. 2003;107:769–776. PubMed

Li PL, Campbell WB. Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through guanine nucleotide binding protein. Circ Res. 1998;80:877–884. PubMed

Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR, Roman JR. Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K(+)-channel activity. Am J Physiol. 1996;270:F822–832. PubMed

Fleming I, Rueben A, Popp R, Fisslthaler B, Schrodt S, Sander A, Haendeler J, Falck JR, Morisseau Ch, Hammock BD, Busse R. Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27:2612–2618. PubMed

Madhun ZT, Goldthwait DA, McKay D, Hopfer U, Douglas JG. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J Clin Invest. 1991;88:456–461. PubMed PMC

Fan F, Muoya Y, Roman RJ. Cytochrome P450 eicosanoids in hypertension and renal disease. Curr Opin Nephrol Hypertens. 2015;24:37–46. PubMed PMC

Sakairi Y, Jacobson HR, Noland DT, Capdevila JH, Falck JR, Breyer MD. 5,6-EET inhibits ion transport in collecting duct by stimulating endogenous prostaglandin synthesis. Am J Physiol. 1995;268:F931–F939. PubMed

Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev. 2012;92:101–130. PubMed PMC

Imig JD, Pham BT, LeBlanc EA, Falck JR, Inscho EW. Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin-1 afferent arteriolar vasoconstrictor and calcium responses. Hypertension. 2000;35:307–312. PubMed

Imig JD, Falck JR, Inscho EW. Contribution of cytochrome P450 epoxygenase and hydroxylase pathways to afferent arteriolar autoregulatory responsiveness. Br J Pharmacol. 1999;127:1399–1405. PubMed PMC

Elmarakby AA. Reno-protective mechanisms of epoxyeicosatrienoic acids in cardiovascular disease. Am J Physiol. 2012;302:R321–R330. PubMed

Imig JD, Deichmann PC. Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P-450 pathways. Am J Physiol. 1997;273:F274–F282. PubMed

Imig JD, Zhao X, Falck JR, Wei S, Capdevila JH. Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid. J Hypertens. 2001;19:983–992. PubMed

Kohagure K, Endo Y, Ito O, Arima S, Omata K, Ito S. Endogenous nitric oxide and epoxyeicosatrienoic acids modulate angiotensin II-induced constriction in the rabbit a | channel activation. Clin Exp Pharmacol Physiol. 2005;32:478–481. PubMed

Amberg GC, Santana LF. Downregulation of BK channel beta1 subunit in genetic hypertension. Circ Res. 2003;93:965–971. PubMed

Burnham MP, Johnson IT, Weston AH. Reduced Ca2+-dependent activation of large-conductance Ca2+-activated K channels from arteries of type 2 diabetic Zucker diabetic fatty rats. Am J Physiol. 2006;290:H1520–H1527. PubMed

Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Phys Rev. 2002;82:131–185. PubMed

Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev. 2014;66:1106–1140. PubMed

Alonso-Galicia M, Maier KG, Greene AS, Cowley AW, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. Am J Physiol. 2002;283:R60–R68. PubMed

Williams JM, Murphy S, Burke M, Roman RJ. 20-hydroxyeicosatetraeonic acid: a new target for the treatment of hypertension. J Cardiovasc Pharmacol. 2010;56:336–344. PubMed PMC

Alonso-Galicia M, Maier KG, Greene AS, Cowley AW, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. Am J Physiol. 2002;283:R60–R68. PubMed

Joly E, Seqqat R, Flamion B, Caron N, Michal A, Imig JD, Kramp R. Increased renal vascular reactivity to angiotensin II after unilateral nephrectomy in the rat involves 20-HETE. Am J Physiol. 2006;291:R977–R986. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace