Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide in mice with renovascular hypertension
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
HL59699
NHLBI NIH HHS - United States
R01 HL059699
NHLBI NIH HHS - United States
P01 DK038226
NIDDK NIH HHS - United States
R01 ES002710
NIEHS NIH HHS - United States
P42 ES013933
NIEHS NIH HHS - United States
DK38226
NIDDK NIH HHS - United States
R01 ES02710
NIEHS NIH HHS - United States
Howard Hughes Medical Institute - United States
R01 ES013933
NIEHS NIH HHS - United States
PubMed
22948718
PubMed Central
PMC3604982
DOI
10.1159/000339883
PII: 000339883
Knihovny.cz E-zdroje
- MeSH
- antihypertenziva farmakologie terapeutické užití MeSH
- epoxid hydrolasy antagonisté a inhibitory metabolismus MeSH
- inhibitory enzymů farmakologie terapeutické užití MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- oxid dusnatý * metabolismus MeSH
- renovaskulární hypertenze farmakoterapie enzymologie MeSH
- synthasa oxidu dusnatého, typ III nedostatek MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antihypertenziva MeSH
- Ephx2 protein, mouse MeSH Prohlížeč
- epoxid hydrolasy MeSH
- inhibitory enzymů MeSH
- Nos3 protein, mouse MeSH Prohlížeč
- oxid dusnatý * MeSH
- synthasa oxidu dusnatého, typ III MeSH
OBJECTIVE: The present study was performed to examine whether the blood pressure (BP)-lowering effects of soluble epoxide hydrolase (sEH) inhibition in two-kidney, one-clip (2K1C) Goldblatt hypertension are nitric oxide (NO) dependent. METHODS: Mice lacking the endothelial NO synthase (eNOS) gene (eNOS-/-) and their wild-type controls (eNOS+/+) underwent clipping of one renal artery. BP was monitored by radiotelemetry and the treatment with the sEH inhibitor cis-4-[4-(3-adamantan-1-yl-ureido)cyclohex-yloxy]-benzoic acid (c-AUCB) was initiated on day 25 after clipping and lasted for 14 days. Renal concentrations of epoxyeicosatrienoic acids (EETs) and their inactive metabolite dihydroxyeicosatrienoic acids (DHETs) were measured in the nonclipped kidney. Renal NO synthase (NOS) activity was determined by measuring the rate of formation of L-[(14)C]citruline from L-[(14)C]arginine. RESULTS: Treatment with the sEH inhibitor elicited similar BP decreases that were associated with increases in daily sodium excretion in 2K1C eNOS+/+ as well as 2K1C eNOS-/- mice. In addition, treatment with the sEH inhibitor increased the ratio of EETs/DHETs in the nonclipped kidney of 2K1C eNOS+/+ as well as 2K1C eNOS-/- mice. Treatment with the sEH inhibitor did not alter renal NOS activity in any of the experimental groups. CONCLUSIONS: Collectively, our present data suggest that the BP-lowering effects of chronic sEH inhibition in 2K1C mice are mainly associated with normalization of the reduced availability of biologically active EETs in the nonclipped kidney and their direct natriuretic actions.
Zobrazit více v PubMed
Ploth DW. Angiotensin-dependent renal mechanism in two-kidney, one-clip renal vascular hypertension. Am J Physiol. 1983;245:F131–F141. PubMed
Navar LG, Zou L, Von Thun A, Wang CT, Imig JD, Mitchell KD. Unraveling the mystery of Goldblatt hypertension. News Physiol Sci. 1998;13:170–176. PubMed
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–287. PubMed
Guan S, Fox K, Mitchell, Navar LG. Angiotensin and angiotensin converting enzyme tissue levels in two-kidney, one-clip hypertensive rats. Hypertension. 1992;20:763–767. PubMed
El-Dahr SS, Dipp S, Guan S, Navar LG. Renin, angiotensinogen, and kallikrein gene expression in two-kidney Goldblatt hypertensive rats. Am J Hypertens. 1993;6:914–919. PubMed
Cervenka L, Wang CT, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension. 1999;33:102–107. PubMed
Červenka L, Vaněčková I, Husková Z, Vaňourková Z, Erbanová M, Thumová M, Škaroupková P, Opočenský M, Malý J, Čertíková Chábová V, Tesař V, Bürgelová M, Viklický O, Teplan V, Želízko M, Kramer HJ, Navar LG. Pivotal role of AT1A receptors in the development of two-kidney, one-clip hypertension: study in AT1A receptor knockout mice. J Hypertens. 2008;26:1379–1389. PubMed PMC
Walkowska A, Škaroupková P, Husková Z, Vanourková Z, Čertíková Chábová V, Tesař V, Kramer HJ, Falck JR, Imig JD, Kompanovska-Jezierska E, Sadowski J, Červenka L. Intrarenal cytochrome P-450 metabolites of arachidonic acid in the regulation of the nonclipped kidney function in two-kidney, one-clip Goldblatt hypertensive rats. J Hypertens. 2010;28:582–593. PubMed PMC
Sarkis A, Lopez B, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in hypertension. Curr Opin Nephrol Hypertens. 2004;13:205–214. PubMed
Imig JD, Zhao X, Falck JR, Wei S, Capdevila JH. Enhanced renal mircovascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid. J Hypertens. 2001;19:983–992. PubMed
Lee CR, Imig JD, Edin ML, Foley J, DeGraff LM, Bradbury JA, Graves JP, Lih FB, Clark J, Myers P, Perrow AL, Lepp AN, Kannon MA, Ronnekleiv OK, Alkayed NJ, Falck JR, Tommer KB, Zeldin DC. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. FASEB J. 2010;24:3770–3781. PubMed PMC
Imig JD. Targeting epoxides for organ damage in hypertension. J Cardiovasc Pharmacol. 2010;56:329–335. PubMed PMC
Sporkova A, Kopkan L, Varcabová A, Husková Z, Hwang SH, Hammock BD, Imig JD, Kramer HJ, Červenka L. Role of cytochrome P450 metabolites in the regulation of renal function and blood pressure in 2-kidney, 1-clip hypertensive rats. Am J Physiol. 2011;300:R1468–R1475. PubMed PMC
Gao J, Bellien J, Gomez E, Henry JP, Dautreaux B, Bounoure F, Skiba M, Thuillez C, Richard V. Soluble epoxide hydrolase inhibition prevents coronary endothelial dysfunction in mice with renovascular hypertension. J Hypertens. 2011;29:1128–1135. PubMed
Hercule HC, Schunck WH, Gross V, Seringer J, Leung FP, Weldon SM, da Costa Goncalves ACh, Huang Y, Luft FC, Gollasch M. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 2009;29:54–60. PubMed
Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendations for blood pressure measurements in humans and experimental animals. Part 2: Blood pressure measurements in experimental animals. Hypertension. 2005;45:299–310. PubMed
Rakušan D, Bürgelová M, Vaněčková I, Vaňourková Z, Husková Z, Škaroupková P, Mrázová I, Opočenský M, Kramer HJ, Netuka I, Malý J, Alenina N, Bader M, Santos RAS, Červenka L. Knockout of angiotensin 1–7 receptor mas worsens the course of two-kidney, one-clip Goldblatt hypertension: roles of nitric oxide deficiency and enhanced vascular responsiveness to angiotensin II. Kidney and Blood Press Res. 2010;33:476–488. PubMed
Honetschlägerová Z, Husková Z, Vaňourková Z, Sporková A, Kramer HJ, Hwang SH, Tsai HJ, Hammock BD, Imig JD, Červenka L, Kopkan L. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J Physiol. 2011;589:207–219. PubMed PMC
Honetschlägerová Z, Sporková A, Kopkan L, Husková Z, Hwang SH, Hammock BD, Imig JD, Kamer HJ, Kujal P, Vernerová Z, Čertíková Chábová V, Tesař V, Červenka L. Inhibition of soluble epoxide hydrolyse improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2011;29:1590–1601. PubMed PMC
Husková Z, Kramer HJ, Vaňourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens. 2006;24:517–527. PubMed
Fox J, Guan S, Hymel AA, Navar LG. Dietary Na and ACE inhibition effects on renal tissue angiotensin I and II and ACE activity in rats. Am J Physiol. 1992;262:F902–F909. PubMed
Čertíková Chábová V, Kramer HJ, Vaně;čková I,Thumová M, Škaroupková P, Tesař V, Falck JR, Imig JD, Červenka L. The roles of intrarenal 20-hydroxyeicosatetraenoic and epoxyeicosatrienoic acids in the regulation of renal function in hypertensive Ren-2 transgenic rats. Kidney and Blood Press Res. 2007;30:335–346. PubMed
Neckář J, Kopkan L, Husková Z, Kolář F, Papoušek F, Kramer HJ, Hwang SH, Hammock BD, Imig JD, Malý J, Netuka I, Ošťádal B, Červenka L. Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin Sci. 2012;122:513–525. PubMed PMC
Manhiami M, Quigley JE, Knight SF, Tasoobshirazi S, Moore T, Brands MW, Hammock BD, Imig JD. Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. Am J Physiol. 2009;297:F740–F748. PubMed PMC
Chin SY, Pandey KN, Shi SJ, Kobori H, Moreno C, Navar LG. Increased activity and expression of Ca2+-dependent NOS in renal cortex of ANG II-infused hypertensive rats. Am J Physiol. 1999;277:F797–F804. PubMed PMC
Vaněčková I, Kujal P, Husková Z, Vaňourková Z, Vernerová Z, Čertíková Chábová V, Škaroupková P, Kramer HJ, Tesař V, Červenka L. Effects of combined endothelin A receptor and renin-angiotensin system blockade on the course of end-organ damage in 5/6 nephrectomized Ren-2 hypertensive rats. Kidney and Blood Press Res. 2012;35:382–392. PubMed
Madhun ZT, Goldthwait DA, McKay D, Hopfer U, Douglas JG. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J Clin Invest. 1991;88:456–461. PubMed PMC
Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent response. Pfugers Arch. 2010;459:881–895. PubMed PMC
Sakairi Y, Jacobson HR, Noland DT, Capdevila JH, Falck JR, Breyer MD. 5,6-EET inhibits ion transport in collecting duct by stimulating endogenous prostaglandin synthesis. Am J Physiol. 1995;268:F931–F939. PubMed
Zhao X, Yamamoto T, Newman JW, Kim IH, Watanabe T, Hammock BD, Stewart J, Pollock JS, Pollock DM, Imig JD. Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. J Am Soc Nephrol. 2004;15:1244–1253. PubMed
Kujal P, Chabova VC, Vernerova Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Vanourkova Z, Huskova Z, Opocensky M, Skaroupkova P, Schejbalova S, Kramer HJ, Rakusan D, Maly J, Netuka I, Vaneckova I, Kopkan L, Cervenka L. Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol. 2010;37:1159–1169. PubMed
Hall JE, Brands MW. The renin-angiotensin-aldosterone system: renal mechanisms and circulatory homeostasis. In: Seldin DW, Giebisch G, editors. The Kidney: Physiology and Pathophysiology. Philadelphia: Lippincott Williams & Wilkins; 2000. pp. 1009–1046.
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of kidney renin. Physiol Rev. 2010;90:607–673. PubMed
Williams JM, Murphy S, Burke M, Roman RJ. 20-hydroxyeicosatetraeonic acid : a new target for the treatment of hypertension. J Cardiovasc Pharmacol. 2010;56:336–344. PubMed PMC
Liu VWT, Huang PL. Cardiovascular roles of nitric oxide: a review of insights from nitrix oxide synthase gene disrupted mice. Cardiovasc Res. 2008;77:19–29. PubMed PMC
Kopkan L, Hess A, Husková Z, Červenka L, Navar LG, Majid DSA. High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity. Am J Physiol. 2010;299:F656–F663. PubMed PMC
Atochin DN, Huang PL. Endothelial nitric oxide synthase transgenic models of endothelial dysfunction. Pflugers Arch. 2010;460:965–974. PubMed PMC
Sigmon DH, Beierwaltes WH. Renal nitric oxide and angiotensin II interaction in renovascular hypertension. Hypertension. 1993;22:237–242. PubMed
Navar LG, Ichihara A, Chin SY, Imig JD. Nitric oxide-angiotensin II interactions in angiotensin II-dependent hypertension. Acta Physiol Scand. 2000;168:139–147. PubMed