Conditional knockout of collecting duct bradykinin B2 receptors exacerbates angiotensin II-induced hypertension during high salt intake
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 DK056264
NIDDK NIH HHS - United States
DK56264
NIDDK NIH HHS - United States
PubMed
26151827
PubMed Central
PMC5055808
DOI
10.3109/10641963.2015.1047945
Knihovny.cz E-resources
- Keywords
- Angiotensin II, Cre recombinase, bradykinin receptor, collecting duct, high salt diet, hypertension, kallikrein–kinin system,
- MeSH
- Angiotensin II metabolism MeSH
- Gene Knockout Techniques MeSH
- Hypertension * metabolism physiopathology MeSH
- Blood Pressure * drug effects physiology MeSH
- Sodium Chloride, Dietary adverse effects MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Receptor, Bradykinin B2 genetics MeSH
- Kidney Tubules, Collecting * metabolism physiopathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Angiotensin II MeSH
- Sodium Chloride, Dietary MeSH
- Receptor, Bradykinin B2 MeSH
We elucidated the role of collecting duct kinin B2 receptor (B2R) in the development of salt-sensitivity and angiotensin II (ANG II)-induced hypertension. To this end, we used a Cre-Lox recombination strategy to generate mice lacking Bdkrb2 gene for B2R in the collecting duct (Hoxb7-Cre(tg/+):Bdkrb2(flox/flox)). In 3 groups of control (Bdkrb2(flox/flox)) and 3 groups of UB(Bdkrb2-/-) mice, systolic blood pressure (SBP) responses to high salt intake (4 or 8% NaCl; HS) were monitored by radiotelemetry in comparison with standard salt diet (0.4% NaCl) prior to and during subcutaneous ANG II infusion (1000 ng/min/kg) via osmotic minipumps. High salt intakes alone for 2 weeks did not alter SBP in either strain. ANG II significantly increased SBP equally in control (121 ± 2 to 156 ± 3 mmHg) and UB(Bdkrb2-/-) mice (120 ± 2 to 153 ± 2 mmHg). The development of ANG II-induced hypertension was exacerbated by 4%HS in both control (125 ± 3 to 164 ± 5 mmHg) and UB(Bdkrb2-/-) mice (124 ± 2 to 162 ± 3 mmHg) during 2 weeks. Interestingly, 8%HS caused a more profound and earlier ANG II-induced hypertension in UB(Bdkrb2-/-) (129 ± 2 to 166 ± 3 mmHg) as compared to control (128 ± 2 to 158 ± 2 mmHg) and it was accompanied by body weight loss and increased mortality. In conclusion, targeted inactivation of B2R in the renal collecting duct does not cause salt-sensitivity; however, collecting duct B2R attenuates the hypertensive actions of ANG II under conditions of very high salt intake.
b Department of Pathophysiology 2nd Faculty of Medicine Charles University Prague Czech Republic and
c Department of Pediatrics Tulane University School of Medicine New Orleans LA USA
See more in PubMed
Alfie ME, Sigmon DH, Pomposiello SI, Carretero OA. Effect of high salt intake in mutant mice lacking bradykinin-B2 receptors. Hypertension. 1997;29:483–487. PubMed
Madeddu P, Emanueli C, El-Dahr S. Mechanisms of disease: the tissue kallikrein-kinin system in hypertension and vascular remodeling. Nat Clin Pract Nephrol. 2007;3:208–221. PubMed
Kakoki M, Smithies O. The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int. 2009;75:1019–1030. PubMed PMC
Rhaleb NE, Yang XP, Carretero OA. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr. Physiol. 2011;1:971–993. PubMed PMC
Hillmeister P, Persson PB. The Kallikrein-Kinin system. Acta Physiol (Oxf) 2012;206:215–219. PubMed
Katori M, Majima M. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension. Prog Drug Res. 2014;69:59–109. PubMed
Wang DZ, Chao L, Chao J. Hypotension in transgenic mice overexpressing human bradykinin B2 receptor. Hypertension. 1997;29:488–493. PubMed
Pereira RL, Buscariollo BN, Corrêa-Costa M, Semedo P, Oliveira CD, Reis VO, Maquigussa E, Araújo RC, Braga TT, Soares MF, Moura IC, Malheiros DM, Filho AP, Keller AC, Câmara NO. Bradykinin receptor 1 activation exacerbates experimental focal and segmental glomerulosclerosis. Kidney Int. 2011;79:1217–1227. PubMed
Ardiles L, Cardenas A, Burgos ME, Droguett A, Ehrenfeld P, Carpio D, Mezzano S, Figueroa CD. Antihypertensive and renoprotective effect of the kinin pathway activated by potassium in a model of salt sensitivity following overload proteinuria. Am J Physiol Renal Physiol. 2013;304:F1399–1410. PubMed
Cervenka L, Maly J, Karasová L, Simová M, Vítko S, Hellerová S, Heller J, El-Dahr SS. Angiotensin II-induced hypertension in bradykinin B2 receptor knockout mice. Hypertension. 2001;37:967–973. PubMed
Cervenka L, Vanecková I, Malý J, Horácek V, El-Dahr SS. Genetic inactivation of the B2 receptor in mice worsens two-kidney, one-clip hypertension: role of NO and the AT2 receptor. J Hypertens. 2003;21:1531–1538. PubMed
Imig JD, Zhao X, Orengo SR, Dipp S, El-Dahr SS. The Bradykinin B2 receptor is required for full expression of renal COX-2 and renin. Peptides. 2003;24:1141–1147. PubMed
Zaika O, Mamenko M, O'Neil RG, Pochynyuk O. Bradykinin acutely inhibits activity of the epithelial Na+ channel in mammalian aldosterone-sensitive distal nephron. Am J Physiol Renal Physiol. 2011;300:F1105–1115. PubMed PMC
Mamenko M, Zaika O, Doris PA, Pochynyuk O. Salt-dependent inhibition of epithelial Na+ channel-mediated sodium reabsorption in the aldosterone-sensitive distal nephron by bradykinin. Hypertension. 2012;60:1234–1241. PubMed PMC
Mamenko M, Zaika O, Pochynyuk O. Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling. Curr Opin Nephrol Hypertens. 2014;23:122–129. PubMed PMC
Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendations for blood pressure measurements in humans and experimental animals. Part 2: Blood pressure measurements in experimental animals. Hypertension. 2005;45:299–310. PubMed
Van Vliet BN, McGuire J, Chafe L, Leonard A, Joshi A, Montani JP. Phenotyping the level of blood pressure by telemetry in mice. Clin Exp Pharmacol Physiol. 2006;33:1007–1015. PubMed
Ramkumar N, Stuart D, Rees S, Van Hoek AN, Sigmund CD, Kohan DE. Collecting duct specific knock-out of renin attenuates angiotensin-II induced hypertension. Am J Physiol Renal Physiol. 2014;307:F931–938. PubMed PMC
Kopkan L, Hess A, Husková Z, Cervenka L, Navar LG, Majid DS. High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity. Am J Physiol Renal Physiol. 2010;299:F656–663. PubMed PMC
Kopkan L, Husková Z, Sporková A, Varcabová Š , Honetschlägerová Z, Hwang SH, Tsai HJ, Hammock BD, Imig JD, Kramer HJ, Bürgelová M, Vojtíšková A, Kujal P, Vernerová Z, Červenka L. Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide in mice with renovascular hypertension. Kidney Blood Press Res. 2012;35:595–607. PubMed PMC
Kujal P, Chábová VČ, Vernerová Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Vaňourková Z, Husková Z, Opočenský M, Skaroupková P, Schejbalová S, Kramer HJ, Rakušan D, Malý J, Netuka I, Vaněčková I, Kopkan L, Cervenka L. Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmaco. Physiol. 2010;37:1159–1169. PubMed
Mamenko M, Zaika O, Prieto MC, Jensen VB, Doris PA, Navar LG, Pochynyuk O. Chronic angiotensin II infusion drives extensive aldosterone-independent epithelial Na+ channel activation. Hypertension. 2013;62:1111–1122. PubMed PMC
Cervenka L, Harrison-Bernard LM, Dipp S, Primrose G, Imig JD, El-Dahr SS. Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice. Hypertension. 1999;34:176–180. PubMed
Mattson DL, Wu F. Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla. Acta Physiol Scand. 2000;168:149–154. PubMed
Sadowski J, Badzynska B. Intrarenal vasodilator systems: NO, prostaglandins and bradykinin. An integrative approach. J Physiol Pharmacol. 2008;59(Suppl 9):105–119. PubMed
Herrera M, Ortiz PA, Garvin JL. Regulation of thick ascending limb transport: role of nitric oxide. Am J Physiol Renal Physiol. 2006;290:F1279–1284. PubMed
Tolins JP, Shultz PJ. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt. Kidney Int. 1994;46:230–236. PubMed
Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol. 2005;289:R913–935. PubMed
Kopkan L, Majid DS. Enhanced superoxide activity modulates renal function in NO-deficient hypertensive rats. Hypertension. 2006;47:568–572. PubMed
Madeddu P, Milia AF, Salis MB, Gaspa L, Gross W, Lippoldt A, Emanueli C. Renovascular hypertension in bradykinin B2-receptor knockout mice. Hypertension. 1998;32:503–509. PubMed
Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MT, Riquier-Brison AD, Seth DM, Fuchs S, Eladari D, Picard N, Bachmann S, Delpire E, Peti-Peterdi J, Navar LG, Bernstein KE, McDonough AA. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123:2011–2023. PubMed PMC
Zhao D, Pandey KN, Navar LG. ANP-mediated inhibition of distal nephron fractional sodium reabsorption in wild-type and mice overexpressing natriuretic peptide receptor. Am J Physiol Renal Physiol. 2010;298:F103–108. PubMed PMC
Yan L, Yao X, Bachvarov D, Saifudeen Z, El-Dahr SS. Genome-wide analysis of gestational gene-environment interactions in the developing kidney. Physiol Genomics. 2014;46:655–670. PubMed PMC
Duka I, Kintsurashvili E, Gavras I, Johns C, Bresnahan M, Gavras H. Vasoactive potential of the b(1) bradykinin receptor in normotension and hypertension. Circ Res. 2001;88:275–281. PubMed
Liao TD, Yang XP, Liu YH, Shesely EG, Cavasin MA, Kuziel WA, Pagano PJ, Carretero OA. Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension. Hypertension. 2008;52:256–263. PubMed PMC
Schanstra JP, Neau E, Drogoz P, Arevalo Gomez MA, Lopez Novoa JM, Calise D, Pecher C, Bader M, Girolami JP, Bascands JL. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest. 2002;110:371–379. PubMed PMC
Pereira RL, Felizardo RJ, Cenedeze MA, Hiyane MI, Bassi EJ, Amano MT, Origassa CS, Silva RC, Aguiar CF, Carneiro SM, Pesquero JB, Araújo RC, Keller Ade C, Monteiro RC, Moura IC, Pacheco-Silva A, Câmara NO. Balance between the two kinin receptors in the progression of experimental focal and segmental glomerulosclerosis in mice. Dis Model Mech. 2014;7:701–710. PubMed PMC
Dean R, Murone C, Lew RA, Zhuo J, Casley D, Müller-Esterl W, Alcorn D, Mendelsohn FA. Localization of bradykinin B2 binding sites in rat kidney following chronic ACE inhibitor treatment. Kidney Int. 1997;52:1261–1270. PubMed
Zhuo J, Dean R, Maric C, Aldred PG, Harris P, Alcorn D, Mendelsohn FA. Localization and interactions of vasoactive peptide receptors in renomedullary interstitial cells of the kidney. Kidney Int Suppl. 1998;67:S22–28. PubMed
Zhuo JL. Renomedullary interstitial cells: a target for endocrine and paracrine actions of vasoactive peptides in the renal medulla. Clin Exp Pharmacol Physiol. 2000;27:465–473. PubMed