Experimental neurotransplantation treatment for hereditary cerebellar ataxias

. 2016 ; 3 () : 7. [epub] 20160404

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27047666

Hereditary cerebellar degenerations are a heterogeneous group of diseases often having a detrimental impact on patients' quality of life. Unfortunately, no sufficiently effective causal therapy is available for human patients at present. There are several therapies that have been shown to affect the pathogenetic process and thereby to delay the progress of the disease in mouse models of cerebellar ataxias. The second experimental therapeutic approach for hereditary cerebellar ataxias is neurotransplantation. Grafted cells might provide an effect via delivery of a scarce neurotransmitter, substitution of lost cells if functionally integrated and rescue or trophic support of degenerating cells. The results of cerebellar transplantation research over the past 30 years are reviewed here and potential benefits and limitations of neurotransplantation therapy are discussed.

Zobrazit více v PubMed

Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs) Cerebellum. 2005;4:2–6. doi: 10.1080/14734220510007914. PubMed DOI

Di Donato S, Marmolino D, Taroni F. Mitochondtial disorders. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer Science + Business Media; 2013. pp. 2269–311.

Finsterer J. X-linked ataxias. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. 2013. pp. 2313–25.

Noreau A, Dupre N, Bouchard JP, Dion PA, Rouleau GA. Autosomal recessive cerebellar ataxias. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer Science + Business Media; 2013. pp. 2177–91.

Taroni F, Chiapparini L, Mariotti C. Autosomal dominant spinocerebellar ataxias and episodic ataxias. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer Science + Business Media; 2013. pp. 2193–267.

Marmolino D, Manto M. Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol. 2010;8:41–61. doi: 10.2174/157015910790909476. PubMed DOI PMC

Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claaßen J, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014;13:248–68. doi: 10.1007/s12311-013-0531-6. PubMed DOI PMC

Gabsi S, Gouider-Khouja N, Belal S, Fki M, Kefi M, Turki I, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol. 2001;8:477–81. doi: 10.1046/j.1468-1331.2001.00273.x. PubMed DOI

Lagier-Tourenne C, Tazir M, Lopez LC, Quinzii CM, Assoum M, Drouot N, et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet. 2008;82:661–72. doi: 10.1016/j.ajhg.2007.12.024. PubMed DOI PMC

Cendelin J. From mice to men: lessons from mutant ataxic mice. Cerebellum Ataxias. 2014;1:4. doi: 10.1186/2053-8871-1-4. PubMed DOI PMC

Boy J, Schmidt T, Wolburg H, Mack A, Nuber S, Bottcher M, et al. Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. Hum Mol Genet. 2009;18:4282–95. doi: 10.1093/hmg/ddp381. PubMed DOI

Chort A, Alves S, Marinello M, Dufresnois B, Dornbierer JG, Tesson C, et al. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain. 2013;136:1732–45. doi: 10.1093/brain/awt061. PubMed DOI

Furrer SA, Waldherr SM, Mohanachandran MS, Baughn TD, Nguyen KT, Sopher BL, et al. Reduction of mutant ataxin-7 expression restores motor function and prevents cerebellar synaptic reorganization in a conditional mouse model of SCA7. Hum Mol Genet. 2013;22:890–903. doi: 10.1093/hmg/dds495. PubMed DOI PMC

Nobrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Hirai H, Deglon N, et al. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PLoS One. 2013;8 doi: 10.1371/journal.pone.0052396. PubMed DOI PMC

Wang HL, Hu SH, Chou AH, Wang SS, Weng YH, Yeh TH. H1152 promotes the degradation of polyglutamine-expanded ataxin-3 or ataxin-7 independently of its ROCK-inhibiting effect and ameliorates mutant ataxin-3-induced neurodegeneration in the SCA3 transgenic mouse. Neuropharmacology. 2013;70:1–11. doi: 10.1016/j.neuropharm.2013.01.006. PubMed DOI

Rodriguez-Lebron E, Costa M, Luna-Cancalon K, Peron TM, Fischer S, Boudreau RL, et al. Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol Ther. 2013;21:1909–18. doi: 10.1038/mt.2013.152. PubMed DOI PMC

Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008;28:12713–24. doi: 10.1523/JNEUROSCI.3909-08.2008. PubMed DOI PMC

Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29:9148–62. doi: 10.1523/JNEUROSCI.0660-09.2009. PubMed DOI PMC

Grimaldi G, Manto M. Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Ann Biomed Eng. 2013;41:2437–47. doi: 10.1007/s10439-013-0846-y. PubMed DOI

Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation--a consensus paper. Cerebellum. 2014;13:121–38. doi: 10.1007/s12311-013-0514-7. PubMed DOI

Rossi F, Cattaneo E. Opinion: Neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci. 2002;3:401–9. doi: 10.1038/nrn809. PubMed DOI

Mullen RJ, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A. 1976;73:208–12. doi: 10.1073/pnas.73.1.208. PubMed DOI PMC

Landis SC, Mullen RJ. The development and degeneration of Purkinje cells in pcd mutant mice. J Comp Neurol. 1978;177:125–43. doi: 10.1002/cne.901770109. PubMed DOI

O’Gorman S, Sidman RL. Degeneration of thalamic neurons in “Purkinje cell degeneration” mutant mice. I. Distribution of neuron loss. J Comp Neurol. 1985;234:277–97. doi: 10.1002/cne.902340302. PubMed DOI

Ghetti B, Norton J, Triarhou LC. Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J Comp Neurol. 1987;260:409–22. doi: 10.1002/cne.902600307. PubMed DOI

LaVail MM, Blanks JC, Mullen RJ. Retinal degeneration in the pcd cerebellar mutant mouse. I. Light microscopic and autoradiographic analysis. J Comp Neurol. 1982;212:217–30. doi: 10.1002/cne.902120302. PubMed DOI

Blanks JC, Mullen RJ, LaVail MM. Retinal degeneration in the pcd cerebellar mutant mouse. II. Electron microscopic analysis. J Comp Neurol. 1982;212:231–46. doi: 10.1002/cne.902120303. PubMed DOI

Triarhou LC. Biological clues on neuronal degeneration based on theoretical fits of decay patterns: towards a mathematical neuropathology. Folia Neuropathol. 2010;48:3–10. PubMed

Baltanas FC, Berciano MT, Valero J, Gomez C, Diaz D, Alonso JR, et al. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia. 2013;61:254–72. doi: 10.1002/glia.22431. PubMed DOI

Sotelo C, Alvarado-Mallart RM. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc Natl Acad Sci U S A. 1986;83:1135–9. doi: 10.1073/pnas.83.4.1135. PubMed DOI PMC

Sotelo C, Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience. 1987;20:1–22. doi: 10.1016/0306-4522(87)90002-9. PubMed DOI

Sotelo C, Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987;327:421–3. doi: 10.1038/327421a0. PubMed DOI

Sotelo C, Alvarado-Mallart RM. Cerebellar transplantations in adult mice with heredo-degenerative ataxia. Ann N Y Acad Sci. 1987;495:242–67. doi: 10.1111/j.1749-6632.1987.tb23679.x. PubMed DOI

Gardette R, Alvarado-Mallart RM, Crepel F, Sotelo C. Electrophysiological demonstration of a synaptic integration of transplanted Purkinje cells into the cerebellum of the adult Purkinje cell degeneration mutant mouse. Neuroscience. 1988;24:777–89. doi: 10.1016/0306-4522(88)90066-8. PubMed DOI

Sotelo C, Alvarado-Mallart RM. The reconstruction of cerebellar circuits. Trends Neurosci. 1991;14:350–5. doi: 10.1016/0166-2236(91)90161-M. PubMed DOI

Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci. 1994;14:124–33. PubMed PMC

Triarhou LC, Low WC, Ghetti B. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat Embryol (Berl) 1987;176:145–54. doi: 10.1007/BF00310047. PubMed DOI

Chang AC, Triarhou LC, Alyea CJ, Low WC, Ghetti B. Developmental expression of polypeptide PEP-19 in cerebellar cell suspensions transplanted into the cerebellum of pcd mutant mice. Exp Brain Res. 1989;76:639–45. doi: 10.1007/BF00248919. PubMed DOI

Triarhou LC, Low WC, Ghetti B. Intraparenchymal grafting of cerebellar cell suspensions to the deep cerebellar nuclei of pcd mutant mice, with particular emphasis on re-establishment of a Purkinje cell cortico-nuclear projection. Anat Embryol (Berl) 1992;185:409–20. doi: 10.1007/BF00174079. PubMed DOI

Triarhou LC, Zhang W, Lee WH. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport. 1995;6:1827–32. doi: 10.1097/00001756-199510020-00002. PubMed DOI

Triarhou LC, Zhang W, Lee WH. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant. 1996;5:269–77. doi: 10.1016/0963-6897(95)02038-1. PubMed DOI

Carletti B, Rossi F. Selective rather than inductive mechanisms favour specific replacement of Purkinje cells by embryonic cerebellar cells transplanted to the cerebellum of adult Purkinje cell degeneration (pcd) mutant mice. Eur J Neurosci. 2005;22:1001–12. doi: 10.1111/j.1460-9568.2005.04314.x. PubMed DOI

Rosenfeld JV, Richards LJ, Bartlett PF. Mutant mouse cerebellum does not provide specific signals for the selective migration and development of transplanted Purkinje cells. Neurosci Lett. 1993;155:19–23. doi: 10.1016/0304-3940(93)90664-7. PubMed DOI

Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol. 2008;317:147–60. doi: 10.1016/j.ydbio.2008.02.005. PubMed DOI

Keep M, Alvarado-Mallart RM, Sotelo C. New insight on the factors orienting the axonal outgrowth of grafted Purkinje cells in the pcd cerebellum. Dev Neurosci. 1992;14:153–65. doi: 10.1159/000111659. PubMed DOI

Diaz D, Lepousez G, Gheusi G, Alonso JR, Lledo PM, Weruaga E. Bone marrow cell transplantation restores olfaction in the degenerated olfactory bulb. J Neurosci. 2012;32:9053–8. doi: 10.1523/JNEUROSCI.0260-12.2012. PubMed DOI PMC

Caddy KWT, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc London Ser B Biol Sci. 1979;287:167–201. doi: 10.1098/rstb.1979.0055. PubMed DOI

Heckroth JA. A quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. I. Morphology and cell number. J Comp Neurol. 1994;343:173–82. doi: 10.1002/cne.903430113. PubMed DOI

Heckroth JA. A quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. II. Volumetric changes in cytological components. J Comp Neurol. 1994;343:182–92. PubMed

Sultan F, Konig T, Mock M, Thier P. Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol. 2002;452:311–23. doi: 10.1002/cne.10365. PubMed DOI

Zanjani SH, Selimi F, Vogel MW, Haeberle AM, Boeuf J, Mariani J, et al. Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/-;Bax−/−. J Comp Neurol. 2006;497:622–35. doi: 10.1002/cne.21017. PubMed DOI

Zuo J, De Jager PL, Takahasi KJ, Jiang W, Linden DJ, Heintz H. Neurodegeneration in Lurcher mice caused by mutation of δ2 glutamate receptor gene. Nature. 1997;388:769–73. doi: 10.1038/42009. PubMed DOI

Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M. Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun. 1993;197:1267–76. doi: 10.1006/bbrc.1993.2614. PubMed DOI

Tomey DA, Heckroth JA. Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of Lurcher mutant mice. Exp Neurol. 1993;122:165–70. doi: 10.1006/exnr.1993.1117. PubMed DOI

Cendelin J, Korelusova I, Vozeh F. A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat Rec (Hoboken) 2009;292:1986–92. doi: 10.1002/ar.20967. PubMed DOI

Cendelin J, Babuska V, Korelusova I, Houdek Z, Vozeh F. Long-term survival of solid embryonic cerebellar grafts in Lurcher mice. Neurosci Lett. 2012;515:23–7. doi: 10.1016/j.neulet.2012.03.007. PubMed DOI

Babuska V, Houdek Z, Tuma J, Purkartova Z, Tumova J, Kralickova M, Vozeh F, Cendelin J. Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic Lurcher mice. Cerebellum. 2015;doi: 10.1007/s12311-015-0656-x. PubMed

Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience. 1993;55:1–21. doi: 10.1016/0306-4522(93)90450-T. PubMed DOI

Heckroth JA, Hobart NJH, Summers D. Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol. 1998;154:336–52. doi: 10.1006/exnr.1998.6960. PubMed DOI

Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23. doi: 10.1016/j.nbd.2010.07.001. PubMed DOI

Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet. 1995;11:126–9. doi: 10.1038/ng1095-126. PubMed DOI

Rakic P, Sidman RL. Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci U S A. 1973;70:240–4. doi: 10.1073/pnas.70.1.240. PubMed DOI PMC

Smeyne RJ, Goldowitz D. Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study. J Neurosci. 1989;9:1608–20. PubMed PMC

Takayama H, Kohsaka S, Shinozaki T, Inoue H, Toya S, Ueda T, et al. Immunohistochemical studies on synapse formation by embryonic cerebellar tissue transplanted into the cerebellum of the weaver mutant mouse. Neurosci Lett. 1987;79:246–50. doi: 10.1016/0304-3940(87)90437-X. PubMed DOI

Kohsaka S, Takayama H, Ueda T, Toya S, Tsukada Y. Reorganization of cerebellar cell suspension transplanted into the weaver mutant cerebellum and immunohistochemical detection of synaptic formation. Neurosci Res. 1988;6:162–6. doi: 10.1016/0168-0102(88)90018-1. PubMed DOI

Takayama H, Toya S, Shinozaki T, Inoue H, Otani M, Kohsaka S, et al. Possible synapse formation by embryonic cerebellar tissue grafted into the cerebellum of the weaver mutant mouse. Acta Neurochir Suppl (Wien) 1988;43:154–8. PubMed

Chen KA, Lanuto D, Zheng T, Steindler DA. Transplantation of embryonic and adult neural stem cells in the granuloprival cerebellum of the weaver mutant mouse. Stem Cells. 2009;27:1625–34. doi: 10.1002/stem.83. PubMed DOI PMC

Landis SC. Ultrastructural changes in the mitochondria of cerebellar Purkinje cells of nervous mutant mice. J Cell Biol. 1973;57:782–97. doi: 10.1083/jcb.57.3.782. PubMed DOI PMC

Li J, Ma Y, Teng YD, Zheng K, Vartanian TK, Snyder EY, et al. Purkinje neuron degeneration in nervous (nr) mutant mice is mediated by a metabolic pathway involving excess tissue plasminogen activator. Proc Natl Acad Sci U S A. 2006;103:7847–52. doi: 10.1073/pnas.0602440103. PubMed DOI PMC

Li J, Yu L, Gu X, Ma Y, Pasqualini R, Arap W, et al. Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci U S A. 2013;110:E2410–9. doi: 10.1073/pnas.1305010110. PubMed DOI PMC

Li J, Imitola J, Snyder EY, Sidman RL. Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006;26:7839–48. doi: 10.1523/JNEUROSCI.1624-06.2006. PubMed DOI PMC

Jaderstad J, Jaderstad LM, Li J, Chintawar S, Salto C, Pandolfo M, et al. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proc Natl Acad Sci U S A. 2010;107:5184–9. doi: 10.1073/pnas.0915134107. PubMed DOI PMC

Hollander WF, Waggie KS. Meander tail: a recessive mutant located in chromosome 4 of the mouse. J Hered. 1977;68:403–6. PubMed

Ross ME, Fletcher C, Mason CA, Hatten ME, Heintz N. Meander tail reveals a discrete developmental unit in the mouse cerebellum. Proc Natl Acad Sci U S A. 1990;87:4189–92. doi: 10.1073/pnas.87.11.4189. PubMed DOI PMC

Eisenman LM, Arlinghaus LE. Spinocerebellar projection in the meander tail mutant mouse: organization in the granular posterior lobe and the agranular anterior lobe. Brain Res. 1991;558:149–52. doi: 10.1016/0006-8993(91)90733-C. PubMed DOI

Rosario CM, Yandava BD, Kosaras B, Zurakowski D, Sidman RL, Snyder EY. Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development. 1997;124:4213–24. PubMed

Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature. 2002;419:367–74. doi: 10.1038/nature01034. PubMed DOI

Benit P, Goncalves S, Dassa EP, Briere JJ, Rustin P. The variability of the harlequin mouse phenotype resembles that of human mitochondrial-complex I-deficiency syndromes. PLoS One. 2008;3 doi: 10.1371/journal.pone.0003208. PubMed DOI PMC

Kumar M, Csaba Z, Peineau S, Srivastava R, Rasika S, Mani S, et al. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann Clin Transl Neurol. 2014;1:968–81. doi: 10.1002/acn3.137. PubMed DOI PMC

Kaemmerer WF, Low WC. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia Type-1. Exp Neurol. 1999;158:301–11. doi: 10.1006/exnr.1999.7099. PubMed DOI

Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci. 2009;29:13126–35. doi: 10.1523/JNEUROSCI.0647-09.2009. PubMed DOI PMC

Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum. 2013;13:323–30. doi: 10.1007/s12311-013-0536-1. PubMed DOI

Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cell. J Biomed Sci. 2011;18:54. doi: 10.1186/1423-0127-18-54. PubMed DOI PMC

Evert BO, Vogt IR, Kindermann C, Ozimek L, de Vos RA, Brunt ER, et al. Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci. 2001;21:5389–96. PubMed PMC

Mendonca LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain. 2015;138:320–35. doi: 10.1093/brain/awu352. PubMed DOI

Sidman RL, Li J, Stewart GR, Clarke J, Yang W, Snyder EY, et al. Injection of mouse and human neural stem cells into neonatal Niemann-Pick A model mice. Brain Res. 2007;1140:195–204. doi: 10.1016/j.brainres.2007.01.011. PubMed DOI

Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK. Neuroglial activation in Niemann–Pick Type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci Lett. 2005;381:234–6. doi: 10.1016/j.neulet.2005.02.029. PubMed DOI

Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH, et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells. 2007;25:1307–16. doi: 10.1634/stemcells.2006-0561. PubMed DOI

Bae JS, Carter JE, Jin HK. Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res. 2010;340:357–69. doi: 10.1007/s00441-010-0942-3. PubMed DOI

Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH, et al. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells. 2010;28:821–31. doi: 10.1002/stem.401. PubMed DOI

Jin HK, Schuchman EH. Ex vivo gene therapy using bone marrow-derived cells: combined effects of intracerebral and intravenous transplantation in a mouse model of Niemann-Pick disease. Mol Ther. 2003;8:876–85. doi: 10.1016/j.ymthe.2003.07.008. PubMed DOI

Ahmad I, Hunter RE, Flax JD, Snyder EY, Erickson RP. Neural stem cell implantation extends life in Niemann-Pick C1 mice. J Appl Genet. 2007;48:269–72. doi: 10.1007/BF03195222. PubMed DOI

Lee JM, Bae JS, Jin HK. Intracerebellar transplantation of neural stem cells into mice with neurodegeneration improves neuronal networks with functional synaptic transmission. J Vet Med Sci. 2010;72:999–1009. doi: 10.1292/jvms.09-0514. PubMed DOI

Purkartova Z, Tuma J, Pesta M, Kulda V, Hajkova L, Sebesta O, et al. Morphological analysis of embryonic cerebellar grafts in SCA2 mice. Neurosci Lett. 2014;558:154–8. doi: 10.1016/j.neulet.2013.11.020. PubMed DOI

Peng WM, Yu LL, Bao CY, Liao F, Li XS, Zuo MX. Transplanted neuronal precursors migrate and differentiate in the developing mouse brain. Cell Res. 2002;12:223–8. doi: 10.1038/sj.cr.7290128. PubMed DOI

Klein C, Butt SJ, Machold RP, Johnson JE, Fishell G. Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development. 2005;132:4497–508. doi: 10.1242/dev.02037. PubMed DOI

Roybon L, Ma Z, Asztely F, Fosum A, Jacobsen SE, Brundin P, et al. Failure of transdifferentiation of adult hematopoietic stem cells into neurons. Stem Cells. 2006;24:1594–604. doi: 10.1634/stemcells.2005-0548. PubMed DOI

Priller J, Persons DA, Klett FF, Kempermann G, Kreutzberg GW, Dirnagl U. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol. 2001;155:733–8. doi: 10.1083/jcb.200105103. PubMed DOI PMC

Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci U S A. 2003;100:2088–93. doi: 10.1073/pnas.0337659100. PubMed DOI PMC

Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003;5:959–66. doi: 10.1038/ncb1053. PubMed DOI

Diaz D, Recio JS, Weruaga E, Alonso JR. Mild cerebellar neurodegeneration of aged heterozygous PCD mice increases cell fusion of Purkinje and bone marrow-derived cells. Cell Transplant. 2012;21:1595–602. doi: 10.3727/096368912X638900. PubMed DOI

Nern C, Wolff I, Macas J, von Randow J, Scharenberg C, Priller J, et al. Fusion of hematopoietic cells with Purkinje neurons does not lead to stable heterokaryon formation under noninvasive conditions. J Neurosci. 2009;29:3799–807. doi: 10.1523/JNEUROSCI.5848-08.2009. PubMed DOI PMC

Kemp K, Gordon D, Wraith DC, Mallam E, Hartfield E, Uney J, et al. Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol. 2011;37:166–78. doi: 10.1111/j.1365-2990.2010.01122.x. PubMed DOI PMC

Miranda SR, Erlich S, Friedrich VL, Jr, Gatt S, Schuchman EH. Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann-Pick disease. Gene Ther. 2000;7:1768–76. doi: 10.1038/sj.gt.3301300. PubMed DOI

Piao J, Major T, Auyeung G, Policarpio E, Menon J, Droms L, et al. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell. 2015;16:198–210. doi: 10.1016/j.stem.2015.01.004. PubMed DOI PMC

Wu CY, Bao XF, Zhang C, Zhang QL. Fetal tissue grafts for cerebellar atrophy. Chin Med J. 1991;104:198–203. PubMed

Tian ZM, Chen T, Zhong N, Li ZC, Yin F, Liu S. Clinical study of transplantation of neural stem cells in therapy of inherited cerebellar atrophy. Beijing Da Xue Xue Bao. 2009;41:456–8. PubMed

Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, et al. A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol. 2012;72:32–40. doi: 10.1002/ana.23612. PubMed DOI

Crain BJ, Tran SD, Mezey E. Transplanted human bone marrow cells generate new brain cells. J Neurol Sci. 2005;233:121–3. doi: 10.1016/j.jns.2005.03.017. PubMed DOI

Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6 doi: 10.1371/journal.pmed.1000029. PubMed DOI PMC

Su HL, Muguruma K, Matsuo-Takasaki M, Kengaku M, Watanabe K, Sasai Y. Generation of cerebellar neuron precursors from embryonic stem cells. Dev Biol. 2006;290:287–96. doi: 10.1016/j.ydbio.2005.11.010. PubMed DOI

Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8:723–9. doi: 10.1038/nn1473. PubMed DOI PMC

Carletti B, Grimaldi P, Magrassi L, Rossi F. Specification of cerebellar progenitors after heterotopic-heterochronic transplantation to the embryonic CNS in vivo and in vitro. J Neurosci. 2002;22:7132–46. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...