Finish with a sprint: Evidence for time-selected last leg of migration in a long-distance migratory songbird
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30073054
PubMed Central
PMC6065334
DOI
10.1002/ece3.4206
PII: ECE34206
Knihovny.cz E-zdroje
- Klíčová slova
- geolocator, long‐distance migrant, migration speed, migration‐breeding transition, optimal migration, sprint migration,
- Publikační typ
- časopisecké články MeSH
Under time-selected migration, birds should choose a strategy for outcompeting rivals over securing access to prime resources at the final destination. Thus, migration can be viewed as a race among individuals where winners are arriving first when conditions are suitable. The sprint migration hypothesis predicts that individuals shift from maximum sustained speed to a final burst of sprint to shorten the transition from migration to breeding (Alerstam, 2006). In this study, we test the hypothesis of a final sprint migration in a long-distance Afro-Palearctic migrant, the collared flycatcher Ficedula albicollis, during autumn and spring, and compare migration strategies between the seasons. In both seasons, collared flycatchers evidently exhibited sprint migration by increasing their overall speed over the last leg of migration after the Sahara crossing. This phenomenon was more pronounced in spring, contributing to overall faster spring migration and possibly highlighting higher importance for early arrival at the breeding grounds. In both seasons and particularly in spring, late departing individuals flew at a faster rate, partially being able to catch up with their early departing conspecifics. Differential fueling strategies may play an important role in determining migration speed, especially during the early stages of the migration, and might explain the observed differences in migration speeds between late and early departing individuals. Our findings suggest competition for early arrival at the breeding and at the nonbreeding destinations alike. Sprint migration might be an appropriate strategy to gain advantage over conspecifics and settle in prime territories as well as to cope with the increasingly earlier springs at high latitudes.
Department of Bird Migration Swiss Ornithological Institute Sempach Switzerland
Department of Zoology Palacký University Olomouc Czech Republic
Zobrazit více v PubMed
Adamík, P. , Emmenegger, T. , Briedis, M. , Gustafsson, L. , Henshaw, I. , Krist, M. , … Hahn, S. (2016). Barrier crossing in small avian migrants: Individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Scientific Reports, 6, 21560 10.1038/srep21560 PubMed DOI PMC
Åkesson, S. , Klaassen, R. , Holmgren, J. , Fox, J. W. , & Hedenström, A. (2012). Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light‐level geolocators. PLoS ONE, 7, e41195 10.1371/journal.pone.0041195 PubMed DOI PMC
Alerstam, T. (2003). Bird migration speed In Berthold P., Gwinner E., & Sonnenschein E. (Eds.), Avian migration (pp. 253–267). Berlin, Germany: Springer; 10.1007/978-3-662-05957-9_17 DOI
Alerstam, T. (2006). Strategies for the transition to breeding in time‐selected bird migration. Ardea, 94, 347–357.
Alerstam, T. (2011). Optimal bird migration revisited. Journal of Ornithology, 152, 5–23. 10.1007/s10336-011-0694-1 DOI
Alerstam, T. , & Lindström, Å. (1990). Optimal bird migration: The relative importance of time, energy, and safety In Gwinner E. (Ed.), Bird migration (pp. 331–351). Berlin, Germany: Springer; 10.1007/978-3-642-74542-3_22 DOI
Bauchinger, U. , & Klaassen, M. (2005). Longer days in spring than in autumn accelerate migration speed of passerine birds. Journal of Avian Biology, 36, 3–5. 10.1111/j.0908-8857.2005.03444.x DOI
Bayly, N. J. , Atkinson, P. W. , & Rumsey, S. J. R. (2012). Fuelling for the Sahara crossing: Variation in site use and the onset and rate of spring mass gain by 38 Palearctic migrants in the western Sahel. Journal of Ornithology, 153, 931–945. 10.1007/s10336-012-0823-5 DOI
Berthold, P. (1991). Genetic control of migratory behaviour in birds. Trends in Ecology & Evolution, 6, 254–257. 10.1016/0169-5347(91)90072-6. PubMed DOI
Briedis, M. , Beran, V. , Hahn, S. , & Adamík, P. (2016). Annual cycle and migration strategies of a habitat specialist, the Tawny Pipit Anthus campestris, revealed by geolocators. Journal of Ornithology, 157, 619–626. 10.1007/s10336-015-1313-3 DOI
Briedis, M. , Hahn, S. , & Adamík, P. (2017). Cold spell en route delays spring arrival and decreases apparent survival in a long‐distance migratory songbird. BMC Ecology, 17, 11 10.1186/s12898-017-0121-4 PubMed DOI PMC
Briedis, M. , Hahn, S. , Gustafsson, L. , Henshaw, I. , Träff, J. , Král, M. , & Adamík, P. (2016). Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long‐distance migrant. Journal of Avian Biology, 47, 743–748. 10.1111/jav.01002 DOI
Briedis, M. , Krist, M. , Král, M. , Voigt, C.C. , Adamík, P. , (2018). Linking events throughout the annual cycle in a migratory bird—non‐breeding period buffers accumulation of carry‐over effects. Behavioral Ecology and Sociobiology, 72, 93 10.1007/s00265-018-2509-3 DOI
Briedis, M. , Träff, J. , Hahn, S. , Ilieva, M. , Král, M. , Peev, S. , & Adamík, P. (2016). Year‐round spatiotemporal distribution of the enigmatic Semi‐collared Flycatcher Ficedula semitorquata . Journal of Ornithology, 157, 895–900. 10.1007/s10336-016-1334-6 DOI
Conklin, J. R. , Battley, P. F. , Potter, M. A. , & Fox, J. W. (2010). Breeding latitude drives individual schedules in a trans‐hemispheric migrant bird. Nature Communications, 1, 67 10.1038/ncomms1072 PubMed DOI
Doren, B. M. V. , Liedvogel, M. , & Helm, B. (2017). Programmed and flexible: Long‐term Zugunruhe data highlight the many axes of variation in avian migratory behaviour. Journal of Avian Biology, 48, 155–172. 10.1111/jav.01348 DOI
Ellegren, H. (1993). Speed of migration and migratory flight lengths of passerine birds ringed during autumn migration in Sweden. Ornis Scandinavica, 24, 220–228. 10.2307/3676737 DOI
Fransson, T. (1995). Timing and speed of migration in North and West European populations of Sylvia Warblers. Journal of Avian Biology, 26, 39–48. 10.2307/3677211 DOI
Gill, J. , Norris, K. , Potts, P. M. , Gunnarsson, T. G. , Atkinson, P. W. , & Sutherland, W. J. (2001). The buffer effect and large‐scale population regulation in migratory birds. Nature, 412, 436–438. 10.1038/35086568 PubMed DOI
Greenberg, R. (1986). Competition in migrant birds in the nonbreeding season. Current Ornithology, 3, 281–307. 10.1007/978-1-4615-6784-4_6 DOI
Gwinner, E. (1989). Einfluß der Photoperiode auf das circannuale System des Halsbandschnäppers (Ficedula albicollis) und des Trauerschnäppers (F. hypoleuca). Journal für Ornithologie, 130, 1–13. 10.1007/BF01647157 DOI
Gwinner, E. (1996). Circadian and circannual programmes in avian migration. The Journal of Experimental Biology, 199, 39–48. PubMed
Hedenström, A. (2008). Adaptations to migration in birds: Behavioural strategies, morphology and scaling effects. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 287–299. 10.1098/rstb.2007.2140 PubMed DOI PMC
Hedenström, A. , & Alerstam, T. (1997). Optimum fuel loads in migratory birds: Distinguishing between time and energy minimization. Journal of Theoretical Biology, 189, 227–234. 10.1006/jtbi.1997.0505 PubMed DOI
Hedenström, A. , & Pettersson, J. (1987). Migration routes and wintering areas of Willow Warblers Phylloscopus trochilus (L.) ringed in Fennoscandia. Ornis Fennica, 64, 137–143.
Karlsson, H. , Nilsson, C. , Bäckman, J. , & Alerstam, T. (2012). Nocturnal passerine migrants fly faster in spring than in autumn: A test of the time minimization hypothesis. Animal Behaviour, 83, 87–93. 10.1016/j.anbehav.2011.10.009 DOI
Klaassen, R. H. G. , Alerstam, T. , Carlsson, P. , Fox, J. W. , & Lindström, A. (2011). Great flights by great snipes: Long and fast non‐stop migration over benign habitats. Biology letters, 7, 833–835. 10.1098/rsbl.2011.0343 PubMed DOI PMC
Kokko, H. (1999). Competition for early arrival in migratory birds. Journal of Animal Ecology, 68, 940–950. 10.1046/j.1365-2656.1999.00343.x. DOI
Langin, K. M. , Norris, D. R. , Kyser, T. K. , Marra, P. P. , & Ratcliffe, L. M. (2006). Capital versus income breeding in a migratory passerine bird: Evidence from stable‐carbon isotopes. Canadian Journal of Zoology, 84, 947–953. 10.1139/Z06-080 DOI
Lindström, Å. , & Alerstam, T. (1992). Optimal fat loads in migrating birds—A test of the time‐minimization hypothesis. American Naturalist, 140, 477–491. 10.1086/285422 PubMed DOI
Lisovski, S. , & Hahn, S. (2012). GeoLight – processing and analysing light‐based geolocator data in R. Methods in Ecology and Evolution, 3, 1055–1059. 10.1111/j.2041-210X.2012.00248.x DOI
Marra, P. P. , Francis, C. M. , Mulvihill, R. S. , & Moore, F. R. (2005). The influence of climate on the timing and rate of spring bird migration. Oecologia, 142, 307–315. 10.1007/s00442-004-1725-x PubMed DOI
McKinnon, E. , Fraser, K. , & Stutchbury, B. (2013). New discoveries in landbird migration using geolocators, and a flight plan for the future. The Auk, 130, 211–222. 10.1525/auk.2013.130.2.12226 DOI
Newton, I. (2008). The migration ecology of birds. London, UK: Academic Press.
Nilsson, C. , Bäckman, J. , & Alerstam, T. (2014). Seasonal modulation of flight speed among nocturnal passerine migrants: Differences between short‐ and long‐distance migrants. Behavioral Ecology and Sociobiology, 68, 1799–1807. 10.1007/s00265-014-1789-5 DOI
Nilsson, C. , Klaassen, R. H. G. , & Alerstam, T. (2013). Differences in speed and duration of bird migration between spring and autumn. The American Naturalist, 181, 837–845. 10.1086/670335 PubMed DOI
Ouwehand, J. , & Both, C. (2016). Alternate non‐stop migration strategies of pied flycatchers to cross the Sahara desert. Biology Letters, 12, 10.1098/rsbl.2015.1060 PubMed DOI PMC
Ouwehand, J. , & Both, C. (2017). African departure rather than migration speed determines variation in spring arrival in pied flycatchers. Journal of Animal Ecology, 86, 88–97. 10.1111/1365-2656.12599 PubMed DOI
Pakanen, V. M. , Jaakkonen, T. , Saarinen, J. , Rönkä, N. , Thomson, R. L. , & Koivula, K. (2018). Migration strategies of the Baltic dunlin: Rapid jump migration in the autumn but slower skipping type spring migration. Journal of Avian Biology, 49, 1–10. 10.1111/jav.01513 DOI
Price, T. (1981). The ecology of the greenish warbler Phylloscopus trochiloides in its winter quarters. Ibis, 123, 131–144 10.1111/j.1474-919X.1981.tb00920.x. DOI
Risely, A. , Blackburn, E. , & Cresswell, W. (2015). Patterns in departure phenology and mass gain on African non‐breeding territories prior to the Sahara crossing in a long‐distance migrant. Ibis, 157, 808–822. 10.1111/ibi.12288 DOI
Schaub, M. , & Jenni, L. (2000). Body mass of six long‐distance migrant passerine species along the autumn migration route. Journal für Ornithologie, 141, 441–460. 10.1007/BF01651574 DOI
Schaub, M. , Jenni, L. , & Bairlein, F. (2008). Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site. Behavioral Ecology, 19, 657–666. 10.1093/beheco/arn023 DOI
Schmaljohann, H. (2018). Proximate mechanisms affecting seasonal differences in migration speed of avian species. Scientific Reports, 8, 4106 10.1038/s41598-018-22421-7 PubMed DOI PMC
Schmaljohann, H. , & Both, C. (2017). The limits of modifying migration speed to adjust to climate change. Nature Climate Change, 7, 573–576. 10.1038/nclimate3336 DOI
Sherry, T. W. , & Holmes, R. T. (1996). Winter habitat quality, population limitation, and conservation of neotropical nearctic migrant birds. Ecology, 77, 36–48. 10.2307/2265652 DOI
Studds, C. , & Marra, P. (2005). Nonbreeding habitat occupancy and population processes: An upgrade experiment with a migratory bird. Ecology, 86, 2380–2385. 10.1890/04-1145 DOI
Stutchbury, B. J. (1994). Competition for winter territories in a neotropical migrant: The role of age, sex, and color. The Auk, 111, 63–69. 10.2307/4088505. DOI
Tøttrup, A. P. , Klaassen, R. H. G. , Kristensen, M. W. , Strandberg, R. , Vardanis, Y. , Lindström, Å. , … Thorup, K. (2012). Drought in Africa caused delayed arrival of European songbirds. Science, 338, 1307 10.1126/science.1227548 PubMed DOI
Vansteelant, W. M. G. , Bouten, W. , Klaassen, R. H. G. , Koks, B. J. , Schlaich, A. E. , van Diermen, J. , … Shamoun‐Baranes, J. (2015). Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. Journal of Avian Biology, 46, 25–39. 10.1111/jav.00457 DOI
van Wijk, R. E. , Kölzsch, A. , Kruckenberg, H. , Ebbinge, B. S. , Müskens, G. J. D. M. , & Nolet, B. A. (2012). Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos, 121, 655–664. 10.1111/j.1600-0706.2011.20083.x DOI
Wiggins, D. A. , Pärt, T. , & Gustafsson, L. (1994). Seasonal decline in Collared flycatcher Ficedula albicollis reproductive success: An experimental approach. Oikos, 70, 359–364.
Xenophontos, M. , Blackburn, E. , & Cresswell, W. (2017). Cyprus wheatears Oenanthe cypriaca likely reach sub‐Saharan African wintering grounds in a single migratory flight. Journal of Avian Biology, 48, 529–535. 10.1111/jav.01119 DOI
Zhao, M. , Christie, M. , Coleman, J. , Hassell, C. , Gosbell, K. , Lisovski, S. , … Klaassen, M. (2018). Body size shapes inter‐specific migratory behaviour: Evidence from individual tracks of long‐distance migratory shorebirds. Journal of Avian Biology, 49, 1–12. 10.1111/jav.01570 DOI
A full annual perspective on sex-biased migration timing in long-distance migratory birds
Dryad
10.5061/dryad.v51p331