• This record comes from PubMed

Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird

. 2017 Apr 04 ; 17 (1) : 11. [epub] 20170404

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 28376915
PubMed Central PMC5381016
DOI 10.1186/s12898-017-0121-4
PII: 10.1186/s12898-017-0121-4
Knihovny.cz E-resources

BACKGROUND: Adjusting the timing of annual events to gradual changes in environmental conditions is necessary for population viability. However, adaptations to weather extremes are poorly documented in migratory species. Due to their vast seasonal movements, long-distance migrants face unique challenges in responding to changes as they rely on an endogenous circannual rhythm to cue the timing of their migration. Furthermore, the exact mechanisms that explain how environmental factors shape the migration schedules of long-distance migrants are often unknown. RESULTS: Here we show that long-distance migrating semi-collared flycatchers Ficedula semitorquata delayed the last phase of their spring migration and the population suffered low return rates to breeding sites while enduring a severe cold spell en route. We found that the onset of spring migration in Africa and the timing of Sahara crossing were consistent between early and late springs while the arrival at the breeding site depended on spring phenology at stopover areas in each particular year. CONCLUSION: Understanding how environmental stimuli and endogenous circannual rhythms interact can improve predictions of the consequences of climate changes on migratory animals.

See more in PubMed

Easterling DR, Karl TR, Gallo KP, Robinson DA, Trenberth KE, Dai A. Observed climate variability and change of relevance to the biosphere. J Geophys Res. 2000;105:101–114. doi: 10.1029/2000JD900166. DOI

Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, et al. Ecological responses to recent climate change. Nature. 2002;416:389–395. doi: 10.1038/416389a. PubMed DOI

Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst. 2006;37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100. DOI

Pearce-Higgins JW, Green RE. Birds and climate change: impacts and conservation responses. Cambridge: Cambridge University Press; 2014.

Knudsen E, Lindén A, Both C, Jonzén N, Pulido F, Saino N, et al. Challenging claims in the study of migratory birds and climate change. Biol Rev. 2011;86:928–946. doi: 10.1111/j.1469-185X.2011.00179.x. PubMed DOI

Berthold P. Genetic control of migratory behaviour in birds. Trends Ecol Evol. 1991;6:254–257. doi: 10.1016/0169-5347(91)90072-6. PubMed DOI

Berthold P. Control of bird migration. London: Chapman & Hall; 1996.

Kok OB, Van Ee CA, Nel DG. Daylength determines departure date of the spotted flycatcher (Muscicapa striata) from its winter quarters. Ardea. 1990;79:63–66.

Bauer S, Nolet BA, Giske J, Chapman JW, Åkesson S, Hedenström A, et al. Cues and decision rules in animal migration. In: Milner-Gulland EJ, Fryxell JM, Sinclair AR, et al., editors. Animal migration—a synthesys. Oxford: Oxford University Press; 2011. pp. 68–87.

Lindström Å, Chapman BB, Jonzén N, Klaassen M. Movement and migration in a changing world. In: Hansson L-A, Åkesson S, editors. Animal movment across scales. Oxford: Oxford University Press; 2014. pp. 36–50.

Meehl GA, Karl T, Easterling DR, Changnon S, Pielke R, Changnon D, et al. An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc. 2000;81:413–416. doi: 10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2. DOI

Thomas DW, Blondel J, Perret P, Lambrechts MM, Speakman JR. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science. 2001;291:2598–2600. doi: 10.1126/science.1057487. PubMed DOI

Briedis M, Träff J, Hahn S, Ilieva M, Král M, Peev S, et al. Year-round spatiotemporal distribution of the enigmatic semi-collared flycatcher Ficedula semitorquata. J Ornithol. 2016;157:895–900. doi: 10.1007/s10336-016-1334-6. DOI

Barboutis C, Evangelidis A, Akriotis T, Fransson T. Spring migration phenology and arrival conditions of the Eastern Bonelli’s Warbler and the Semi-collared Flycatcher at a small Greek island. Ringing Migr. 2013;28:39–42. doi: 10.1080/03078698.2013.811118. DOI

Lisovski S, Hewson CM, Klaassen RHGG, Korner-Nievergelt F, Kristensen MW, Hahn S, et al. Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol. 2012;3:603–612. doi: 10.1111/j.2041-210X.2012.00185.x. DOI

Adamík P, Emmenegger T, Briedis M, Gustafsson L, Henshaw I, Krist M, et al. Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci Rep. 2016;6:21560. doi: 10.1038/srep21560. PubMed DOI PMC

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, et al. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc. 1996;77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. DOI

Kemp MU, Emiel van Loon E, Shamoun-Baranes J, Bouten W. RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol. 2012;3:65–70. doi: 10.1111/j.2041-210X.2011.00138.x. DOI

Erni B, Liechti F, Bruderer B. The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol. 2005;16:732–740. doi: 10.1093/beheco/ari046. DOI

Marra PP, Francis CM, Mulvihill RS, Moore FR. The influence of climate on the timing and rate of spring bird migration. Oecologia. 2005;142:307–315. doi: 10.1007/s00442-004-1725-x. PubMed DOI

Kelly JF, Horton KG, Stepanian PM, de Beurs KM, Fagin T, Bridge ES, et al. Novel measures of continental-scale avian migration phenology related to proximate environmental cues. Ecosphere. 2016;7:e01434. doi: 10.1002/ecs2.1434. DOI

Both C, Visser ME. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature. 2001;411:296–298. doi: 10.1038/35077063. PubMed DOI

Ouwehand J, Both C. African departure rather than migration speed determines variation in spring arrival in pied flycatchers. J Anim Ecol. 2017;86:88–97. doi: 10.1111/1365-2656.12599. PubMed DOI

Briedis M, Hahn S, Gustafsson L, Henshaw I, Träff J, Král M, et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J Avian Biol. 2016;47:743–748. doi: 10.1111/jav.01002. DOI

La Sorte FA, Fink D. Migration distance, ecological barriers and en-route variation in the migratory behaviour of terrestrial bird populations. Glob Ecol Biogeogr. 2017;26:216–227. doi: 10.1111/geb.12534. DOI

Thorup K, Tøttrup AP, Willemoes M, Klaassen RHG, Strandberg R, Vega ML, et al. Resource tracking within and across continents in long-distance bird migrants. Sci Adv. 2017;3:E1601360. doi: 10.1126/sciadv.1601360. PubMed DOI PMC

Tøttrup AP, Klaassen RHG, Kristensen MW, Strandberg R, Vardanis Y, Lindström Å, et al. Drought in Africa caused delayed arrival of European songbirds. Science. 2012;338:1307. doi: 10.1126/science.1227548. PubMed DOI

Bailey LD, van de Pol M. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J Anim Ecol. 2016;85:85–96. doi: 10.1111/1365-2656.12451. PubMed DOI

Brown CR, Brown MB. Intense natural selection on body size and wing and tail asymmetry in cliff swallows during severe weather. Evolution. 1998;52:1461–1475. doi: 10.2307/2411315. PubMed DOI

Costantini D, Møller AP. A meta-analysis of the effects of geolocator application on birds. Curr Zool. 2013;59:697–706. doi: 10.1093/czoolo/59.6.697. DOI

Wijk RE, Souchay G, Jenni-Eiermann S, Bauer S, Schaub M. No detectable effects of lightweight geolocators on a Palaearctic-African long-distance migrant. J Ornithol. 2016;157:255–264. doi: 10.1007/s10336-015-1274-6. DOI

Briedis M, Beran V, Hahn S, Adamík P. Annual cycle and migration strategies of a habitat specialist, the Tawny Pipit Anthus campestris, revealed by geolocators. J Ornithol. 2016;157:619–626. doi: 10.1007/s10336-015-1313-3. DOI

Rodríguez-Ruiz J, Parejo D, de la Puente J, Valera F, Calero-Torralbo MA, Bermejo A, et al. Short- and long-term effects of tracking devices on the European Roller Coracias garrulus. Ibis. 2016;158:179–183. doi: 10.1111/ibi.12317. DOI

Arlt D, Low M, Pärt T. Effect of geolocators on migration and subsequent breeding performance of a long-distance passerine migrant. PLoS ONE. 2013;8:e82316. doi: 10.1371/journal.pone.0082316. PubMed DOI PMC

Weiser EL, Lanctot RB, Brown SC, Alves JA, Battley PF, Bentzen R, et al. Effects of geolocators on hatching success, return rates, breeding movements, and change in body mass in 16 species of Arctic-breeding shorebirds. Mov Ecol. 2016;4:12. doi: 10.1186/s40462-016-0077-6. PubMed DOI PMC

Breuner CW, Delehanty B, Boonstra R. Evaluating stress in natural populations of vertebrates: total CORT is not good enough. Funct Ecol. 2013;27:24–36. doi: 10.1111/1365-2435.12016. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...