Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28376915
PubMed Central
PMC5381016
DOI
10.1186/s12898-017-0121-4
PII: 10.1186/s12898-017-0121-4
Knihovny.cz E-resources
- Keywords
- Circannual rhythm, Climate change, Geolocator, Long-distance migrant, Phenology, Weather extremes,
- MeSH
- Animal Migration * MeSH
- Cold Temperature MeSH
- Climate MeSH
- Seasons MeSH
- Songbirds physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Adjusting the timing of annual events to gradual changes in environmental conditions is necessary for population viability. However, adaptations to weather extremes are poorly documented in migratory species. Due to their vast seasonal movements, long-distance migrants face unique challenges in responding to changes as they rely on an endogenous circannual rhythm to cue the timing of their migration. Furthermore, the exact mechanisms that explain how environmental factors shape the migration schedules of long-distance migrants are often unknown. RESULTS: Here we show that long-distance migrating semi-collared flycatchers Ficedula semitorquata delayed the last phase of their spring migration and the population suffered low return rates to breeding sites while enduring a severe cold spell en route. We found that the onset of spring migration in Africa and the timing of Sahara crossing were consistent between early and late springs while the arrival at the breeding site depended on spring phenology at stopover areas in each particular year. CONCLUSION: Understanding how environmental stimuli and endogenous circannual rhythms interact can improve predictions of the consequences of climate changes on migratory animals.
Department of Bird Migration Swiss Ornithological Institute Seerose 1 6204 Sempach Switzerland
Department of Zoology Palacký University tř 17 listopadu 50 77146 Olomouc Czech Republic
Museum of Natural History nám Republiky 5 77173 Olomouc Czech Republic
See more in PubMed
Easterling DR, Karl TR, Gallo KP, Robinson DA, Trenberth KE, Dai A. Observed climate variability and change of relevance to the biosphere. J Geophys Res. 2000;105:101–114. doi: 10.1029/2000JD900166. DOI
Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, et al. Ecological responses to recent climate change. Nature. 2002;416:389–395. doi: 10.1038/416389a. PubMed DOI
Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst. 2006;37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100. DOI
Pearce-Higgins JW, Green RE. Birds and climate change: impacts and conservation responses. Cambridge: Cambridge University Press; 2014.
Knudsen E, Lindén A, Both C, Jonzén N, Pulido F, Saino N, et al. Challenging claims in the study of migratory birds and climate change. Biol Rev. 2011;86:928–946. doi: 10.1111/j.1469-185X.2011.00179.x. PubMed DOI
Berthold P. Genetic control of migratory behaviour in birds. Trends Ecol Evol. 1991;6:254–257. doi: 10.1016/0169-5347(91)90072-6. PubMed DOI
Berthold P. Control of bird migration. London: Chapman & Hall; 1996.
Kok OB, Van Ee CA, Nel DG. Daylength determines departure date of the spotted flycatcher (Muscicapa striata) from its winter quarters. Ardea. 1990;79:63–66.
Bauer S, Nolet BA, Giske J, Chapman JW, Åkesson S, Hedenström A, et al. Cues and decision rules in animal migration. In: Milner-Gulland EJ, Fryxell JM, Sinclair AR, et al., editors. Animal migration—a synthesys. Oxford: Oxford University Press; 2011. pp. 68–87.
Lindström Å, Chapman BB, Jonzén N, Klaassen M. Movement and migration in a changing world. In: Hansson L-A, Åkesson S, editors. Animal movment across scales. Oxford: Oxford University Press; 2014. pp. 36–50.
Meehl GA, Karl T, Easterling DR, Changnon S, Pielke R, Changnon D, et al. An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc. 2000;81:413–416. doi: 10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2. DOI
Thomas DW, Blondel J, Perret P, Lambrechts MM, Speakman JR. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science. 2001;291:2598–2600. doi: 10.1126/science.1057487. PubMed DOI
Briedis M, Träff J, Hahn S, Ilieva M, Král M, Peev S, et al. Year-round spatiotemporal distribution of the enigmatic semi-collared flycatcher Ficedula semitorquata. J Ornithol. 2016;157:895–900. doi: 10.1007/s10336-016-1334-6. DOI
Barboutis C, Evangelidis A, Akriotis T, Fransson T. Spring migration phenology and arrival conditions of the Eastern Bonelli’s Warbler and the Semi-collared Flycatcher at a small Greek island. Ringing Migr. 2013;28:39–42. doi: 10.1080/03078698.2013.811118. DOI
Lisovski S, Hewson CM, Klaassen RHGG, Korner-Nievergelt F, Kristensen MW, Hahn S, et al. Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol. 2012;3:603–612. doi: 10.1111/j.2041-210X.2012.00185.x. DOI
Adamík P, Emmenegger T, Briedis M, Gustafsson L, Henshaw I, Krist M, et al. Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci Rep. 2016;6:21560. doi: 10.1038/srep21560. PubMed DOI PMC
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, et al. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc. 1996;77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. DOI
Kemp MU, Emiel van Loon E, Shamoun-Baranes J, Bouten W. RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol. 2012;3:65–70. doi: 10.1111/j.2041-210X.2011.00138.x. DOI
Erni B, Liechti F, Bruderer B. The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol. 2005;16:732–740. doi: 10.1093/beheco/ari046. DOI
Marra PP, Francis CM, Mulvihill RS, Moore FR. The influence of climate on the timing and rate of spring bird migration. Oecologia. 2005;142:307–315. doi: 10.1007/s00442-004-1725-x. PubMed DOI
Kelly JF, Horton KG, Stepanian PM, de Beurs KM, Fagin T, Bridge ES, et al. Novel measures of continental-scale avian migration phenology related to proximate environmental cues. Ecosphere. 2016;7:e01434. doi: 10.1002/ecs2.1434. DOI
Both C, Visser ME. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature. 2001;411:296–298. doi: 10.1038/35077063. PubMed DOI
Ouwehand J, Both C. African departure rather than migration speed determines variation in spring arrival in pied flycatchers. J Anim Ecol. 2017;86:88–97. doi: 10.1111/1365-2656.12599. PubMed DOI
Briedis M, Hahn S, Gustafsson L, Henshaw I, Träff J, Král M, et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J Avian Biol. 2016;47:743–748. doi: 10.1111/jav.01002. DOI
La Sorte FA, Fink D. Migration distance, ecological barriers and en-route variation in the migratory behaviour of terrestrial bird populations. Glob Ecol Biogeogr. 2017;26:216–227. doi: 10.1111/geb.12534. DOI
Thorup K, Tøttrup AP, Willemoes M, Klaassen RHG, Strandberg R, Vega ML, et al. Resource tracking within and across continents in long-distance bird migrants. Sci Adv. 2017;3:E1601360. doi: 10.1126/sciadv.1601360. PubMed DOI PMC
Tøttrup AP, Klaassen RHG, Kristensen MW, Strandberg R, Vardanis Y, Lindström Å, et al. Drought in Africa caused delayed arrival of European songbirds. Science. 2012;338:1307. doi: 10.1126/science.1227548. PubMed DOI
Bailey LD, van de Pol M. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J Anim Ecol. 2016;85:85–96. doi: 10.1111/1365-2656.12451. PubMed DOI
Brown CR, Brown MB. Intense natural selection on body size and wing and tail asymmetry in cliff swallows during severe weather. Evolution. 1998;52:1461–1475. doi: 10.2307/2411315. PubMed DOI
Costantini D, Møller AP. A meta-analysis of the effects of geolocator application on birds. Curr Zool. 2013;59:697–706. doi: 10.1093/czoolo/59.6.697. DOI
Wijk RE, Souchay G, Jenni-Eiermann S, Bauer S, Schaub M. No detectable effects of lightweight geolocators on a Palaearctic-African long-distance migrant. J Ornithol. 2016;157:255–264. doi: 10.1007/s10336-015-1274-6. DOI
Briedis M, Beran V, Hahn S, Adamík P. Annual cycle and migration strategies of a habitat specialist, the Tawny Pipit Anthus campestris, revealed by geolocators. J Ornithol. 2016;157:619–626. doi: 10.1007/s10336-015-1313-3. DOI
Rodríguez-Ruiz J, Parejo D, de la Puente J, Valera F, Calero-Torralbo MA, Bermejo A, et al. Short- and long-term effects of tracking devices on the European Roller Coracias garrulus. Ibis. 2016;158:179–183. doi: 10.1111/ibi.12317. DOI
Arlt D, Low M, Pärt T. Effect of geolocators on migration and subsequent breeding performance of a long-distance passerine migrant. PLoS ONE. 2013;8:e82316. doi: 10.1371/journal.pone.0082316. PubMed DOI PMC
Weiser EL, Lanctot RB, Brown SC, Alves JA, Battley PF, Bentzen R, et al. Effects of geolocators on hatching success, return rates, breeding movements, and change in body mass in 16 species of Arctic-breeding shorebirds. Mov Ecol. 2016;4:12. doi: 10.1186/s40462-016-0077-6. PubMed DOI PMC
Breuner CW, Delehanty B, Boonstra R. Evaluating stress in natural populations of vertebrates: total CORT is not good enough. Funct Ecol. 2013;27:24–36. doi: 10.1111/1365-2435.12016. DOI
A full annual perspective on sex-biased migration timing in long-distance migratory birds