Research on Experimental Hypertension in Prague (1966-2009)
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu historické články, časopisecké články
PubMed
39016152
PubMed Central
PMC11412355
DOI
10.33549/physiolres.935425
PII: 935425
Knihovny.cz E-zdroje
- MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- hypertenze * metabolismus patofyziologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- renin-angiotensin systém MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
The study of ontogenetic aspects of water and electrolyte metabolism performed in the Institute of Physiology (Czechoslovak Academy of Sciences) led to the research on the increased susceptibility of immature rats to salt-dependent forms of hypertension since 1966. Hemodynamic studies in developing rats paved the way to the evaluation of hemodynamic mechanisms during the development of genetic hypertension in SHR. A particular attention was focused on altered renal function and kidney damage in both salt and genetic hypertension with a special respect to renin-angiotensin system. Renal damage associated with hypertension progression was in the center of interest of several research groups in Prague. The alterations in ion transport, cell calcium handling and membrane structure as well as their relationship to abnormal lipid metabolism were studied in a close cooperation with laboratories in Munich, Glasgow, Montreal and Paris. The role of NO and oxidative stress in various forms of hypertension was a subject of a joint research with our Slovak colleagues focused mainly on NO-deficient hypertension elicited by chronic L-NAME administration. Finally, we adopted a method enabling us to evaluate the balance of vasoconstrictor and vasodilator mechanisms in BP maintenance. Using this method we demonstrated sympathetic hyperactivity and relative NO deficiency in rats with either salt-dependent or genetic hypertension. At the end of the first decennium of this century we were ready to modify our traditional approach towards modern trends in the research of experimental hypertension. Keywords: Salt-dependent hypertension o Genetic hypertension o Body fluids o Hemodynamics o Ion transport o Cell membrane structure and function o Renal function o Renin-angiotensin systems.
Zobrazit více v PubMed
Čapek K, Jelínek J. The development of the control of water metabolism. I. The excretion of urine in young rats. Physiol Bohemoslov. 1956;5:91–96. PubMed
Křeček J, Křečková J. The development of the regulation of water metabolism. III. The relation between water and milk intake in infant rats. Physiol Bohemoslov. 1957;6:26–34.
Jelínek J. The development of the regulation of water metabolism .5. Changes in content of water, potassium, sodium and chloride in body and body fluids of the rat during development. Physiol Bohemoslov. 1961;10:249–258.
Jelínek J. The development of the regulation of water metabolism .6. Changes in the volume of cellular and extracellular fluid in the body of rats during development. Physiol Bohemoslov. 1961;10:259–266.
Guillebeau J, Skelton FR. The influence of age on the development of adrenal-regeneration hypertension. Endocrinology. 1956;59:201–212. doi: 10.1210/endo-59-2-201. PubMed DOI
Jelínek J, Albrecht I, Musilová H. The age factor in experimental hypertension: hypertension due to adrenal regeneration. Physiol Bohemoslov. 1966;15:424–433. PubMed
Jelínek J. Salt intake and sexual differences in sensitivity of rats to adrenal-regeneration hypertension. Physiol Bohemoslov. 1967;16:389–399. PubMed
Musilová H, Jelínek J, Albrecht I. The age of factor in experimental hypertension of the DCA type in rats. Physiol Bohemoslov. 1966;15:525–531. PubMed
Jelínek J. Blood volume in rats with DOCA-hypertension elicited at different ages. Physiol Bohemoslov. 1972;21:581–588. PubMed
Karen P, Deyl Z, Jelínek J. Influence of age and treatment with sodium chloride and desoxycorticosterone acetate on collagenous stroma of compensatory growing kidneys in the rat. Mech Ageing Dev. 1974;3:157–163. doi: 10.1016/0047-6374(74)90012-8. PubMed DOI
Kuneš J, Karen P, Čapek K, Jelínek J. The influence of salt intake on glomerular count in compensatory kidney hypertrophy in rats of different ages. Experientia. 1976;32:887–888. doi: 10.1007/BF02003748. PubMed DOI
Pohlová I, Kuneš J, Jelínek J. The influence of age on the activity of the renin-angiotensin system in rats with adrenal-regeneration hypertension. Physiol Bohemoslov. 1983;32:438–448. PubMed
Kuneš J, Jelínek J. Influence of age on saline hypertension in subtotal nephrectomized rats. Physiol Bohemoslov. 1984;33:123–128. PubMed
Hausmann J, Jelínek J, Deyl Z. Changes in glomerular basement membrane collagen caused by DOCA-NaCl treatment in rats. Nephron. 1985;39:250–254. doi: 10.1159/000183380. PubMed DOI
Vaněčková I, Kuneš J, Jelínek J. Function of the isolated perfused kidneys from young or adult rats with post-DOCA-salt hypertension. Clin Exp Hypertens. 1999;21:407–421. doi: 10.3109/10641969909068673. PubMed DOI
Cherchovich GM, Čapek K, Jefremova Z, Pohlová I, Jelínek J. High salt intake and blood pressure in lower primates (Papio hamadryas) J Appl Physiol. 1976;40:601–604. doi: 10.1152/jappl.1976.40.4.601. PubMed DOI
Kuneš J, Čapek K, Jelínek J, Cherkovich GM. Extracellular fluid distribution in salt-hypertensive monkeys. Experientia. 1978;34:753–754. doi: 10.1007/BF01947304. PubMed DOI
Dlouhá H, Křeček J, Krečková J. Water diuresis and the effect of vasopressin in infant rats. Physiol Bohemoslov. 1963;12:443–452. PubMed
Dlouhá H, Kraus M, Křeček J, Pliška V. Sensitivity of rats to vasopressin in the weaning period. Physiol Bohemoslov. 1965;14:217–224. PubMed
Hall CE, Ayachi S, Hall O. Spontaneous hypertension in rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain) Tex Rep Biol Med. 1973;31:471–487.
Dlouhá H, Křeček J, Zicha J. Hypertension in rats with hereditary diabetes insipidus. The role of age. Pflugers Arch. 1977;369:177–182. doi: 10.1007/BF00591574. PubMed DOI
Dlouhá H, Křeček J, Zicha J. Effect of age on hypertensive stimuli and the development of hypertension in Brattleboro rats. Clin Sci (Lond) 1979;57:273–275. doi: 10.1042/cs0570273. PubMed DOI
Albrecht I, Hallbäck M, Julius S, Lundgren Y, Stage L, Weiss L, Folkow B. Arterial pressure, cardiac output and systemic resistance before and after pithing in normotensive and spontaneously hypertensive rats. Acta Physiol Scand. 1975;94:378–385. doi: 10.1111/j.1748-1716.1975.tb05897.x. PubMed DOI
Zicha J, Křeček J, Dlouhá H. Age-dependent salt hypertension in Brattleboro rats: a hemodynamic analysis. Ann N Y Acad Sci. 1982;394:330–342. doi: 10.1111/j.1749-6632.1982.tb37444.x. PubMed DOI
Zicha J, Kuneš J, Jelínek J. Age-dependent DOCA-salt hypertension in Brattleboro rats: the role of vasopressin. Physiol Bohemoslov. 1987;36:33–42. PubMed
Kuneš J, Nedvídek J, Zicha J. Vasopressin and water distribution in rats with DOCA-salt hypertension. J Hypertens. 1989;7(Suppl 6):S204–S205. doi: 10.1097/00004872-198900076-00098. PubMed DOI
Zicha J, Kuneš J, Lébl M, Pohlová I, Slaninová J, Jelínek J. Antidiuretic and pressor actions of vasopressin in age-dependent DOCA-salt hypertension. Am J Physiol. 1989;256:R138–R145. doi: 10.1152/ajpregu.1989.256.1.R138. PubMed DOI
Kojima I, Yoshihara S, Ogata E. Involvement of endogenous digitalis-like substance in genesis of deoxycorticosterone-salt hypertension. Life Sci. 1982 May 24;30:1775–1781. doi: 10.1016/0024-3205(82)90313-7. PubMed DOI
Zicha J, Štolba P, Pohlová I, Kunes J, Jelínek J. A different role of digoxin-like factor in the maintenance of elevated blood pressure in rats treated with DOCA and saline in youth or only in adulthood. J Hypertens Suppl. 1984;2(Suppl 3):S481–S483. PubMed
Zicha J, Kuneš J, Štolba P. Endogenous digoxin-like factor contributes to the elevation of systemic resistance in rats exposed to high salt intake from prepuberty. J Hypertens. 1985;3(Suppl 3):S17–S19. PubMed
Kuneš J, Štolba P, Pohlová I, Jelínek J, Zicha J. The importance of endogenous digoxin-like factors in rats with various forms of experimental hypertension. Clin Exp Hypertens A. 1985;7(5–6):707–720. doi: 10.3109/10641968509077222. PubMed DOI
Zicha J, Kuneš J, Jelínek J. Experimental hypertension in young and adult animals. Hypertension. 1986;8:1096–1104. doi: 10.1161/01.HYP.8.12.1096. PubMed DOI
Kurtz TW, Morris RC., Jr Dietary chloride as a determinant of “sodium-dependent” hypertension. Science. 1983;222:1139–1141. doi: 10.1126/science.6648527. PubMed DOI
Kurtz TW, Morris RC., Jr Hypertension in the recently weaned Dahl salt-sensitive rat despite a diet deficient in sodium chloride. Science. 1985;230:808–810. doi: 10.1126/science.4059913. PubMed DOI
Whitescarver SA, Ott CE, Jackson BA, Guthrie GP, Jr, Kotchen TA. Salt-sensitive hypertension: contribution of chloride. Science. 1984;223:1430–1432. doi: 10.1126/science.6322303. PubMed DOI
Whitescarver SA, Holtzclaw BJ, Downs JH, Ott CE, Sowers JR, Kotchen TA. Effect of dietary chloride on salt-sensitive and renin-dependent hypertension. Hypertension. 1986;8:56–61. https://doi.org/10.1161/01.HYP.8.6.552, https://doi.org/10.1161/01.HYP.8.1.56. PubMed DOI
Zicha J, Kuneš J, Jelínek J, Leont’eva GR, Govyrin VA. The importance of sodium and chloride ions for the development of DOCA-NaCl hypertension: a haemodynamic study. Physiol Bohemoslov. 1986;35:308–312. PubMed
Zicha J, Kuneš J. Haemodynamic changes induced by short- and long-term sodium chloride or sodium bicarbonate intake in deoxycorticosterone-treated rats. Acta Physiol Scand. 1994;151:217–223. doi: 10.1111/j.1748-1716.1994.tb09740.x. PubMed DOI
Kuneš J, Zicha J, Jelínek J. The role of chloride in deoxycorticosterone hypertension: selective sodium loading by diet or drinking fluid. Physiol Res. 2004;53:149–154. doi: 10.33549/physiolres.930000.53.149. PubMed DOI
Albrecht I. The hemodynamics of early stages of spontaneous hypertension in rats. Part I: Male study. Jpn Circ J. 1974;(38):985–990. doi: 10.1253/jcj.38.985. PubMed DOI
Albrecht I. The hemodynamics of early stages of spontaneous hypertension in rats. Part II: Female study. Jpn Circ J. 1974;38:991–996. doi: 10.1253/jcj.38.991. PubMed DOI
Albrecht I. Critical period for the development of spontaneous hypertension in rats. Mech Ageing Dev. 1974;3:75–79. doi: 10.1016/0047-6374(74)90007-4. PubMed DOI
Pang SC, Long C, Poirier M, Tremblay J, Kuneš J, Vincent M, Sassard J, Duzzi L, Bianchi G, Ledingham J, et al. Cardiac and renal hyperplasia in newborn genetically hypertensive rats. J Hypertens. 1986;4(Suppl 3):S119–S122. PubMed
Kuneš J, Pang SC, Cantin M, Genest J, Hamet P. Cardiac and renal hyperplasia in newborn spontaneously hypertensive rats. Clin Sci (Lond) 1987;72:271–275. doi: 10.1042/cs0720271. PubMed DOI
Dobešová Z, Zicha J, Kuneš J. Newborn organ weight and spontaneous hypertension: recombinant inbred strain study. Clin Exp Hypertens. 1997;19:403–415. doi: 10.3109/10641969709084504. PubMed DOI
Hamet P, Pausova Z, Dumas P, Sun YL, Tremblay J, Pravenec M, Kuneš J, Křenová D, Křen V. Newborn and adult recombinant inbred strains: a tool to search for genetic determinants of target organ damage in hypertension. Kidney Int. 1998;53:1488–1492. doi: 10.1046/j.1523-1755.1998.00938.x. PubMed DOI
Zicha J, Kuneš J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev. 1999;79:1227–1282. doi: 10.1152/physrev.1999.79.4.1227. PubMed DOI
Heller J, Hellerová S, Dobešová Z, Kuneš J, Zicha J. The Prague Hypertensive Rat: a new model of genetic hypertension. Clin Exp Hypertens. 1993;15:807–818. doi: 10.3109/10641969309041643. PubMed DOI
Heller J, Schubert G, Havlíčková J, Thurau K. The role of the kidney in the development of hypertension: a transplantation study in the Prague hypertensive rat. Pflugers Arch. 1993;425:208–212. doi: 10.1007/BF00374168. PubMed DOI
Heller J, Havlíčková J, Hellerová S, Schubert G, Thurau K. A transient role of the kidney in the maintenance of hypertension. Kidney Int. 1996;(Suppl 55):S163–S165. PubMed
Vanĕčková I, Heller J, Thurau K. Possible contribution of impaired sodium excretion to the development and maintenance of hypertension: a study of the isolated kidneys of the Prague hypertensive rat. Pflugers Arch. 1997;434:587–591. doi: 10.1007/s004240050440. PubMed DOI
Vogel V, Bäcker A, Heller J, Kramer HJ. The renal endothelin system in the Prague hypertensive rat, a new model of spontaneous hypertension. Clin Sci (Lond) 1999;97:919–918. doi: 10.1042/cs0970091. PubMed DOI
Heller J, Kramer HJ, Červenka L, Hellerová S. Losartan protects the rat kidney from ischemic injury. Kidney Int. 1996;(Suppl 55):S113–S114. PubMed
Heller J, Hellerová S. Long-term effect on blood pressure of early brief treatment by different antihypertensive agents: a study in the Prague hypertensive rat. Kidney Blood Press Res. 1998;21:445–451. doi: 10.1159/000025898. PubMed DOI
Zicha J, Dobešová Z, Kuneš J. Late blood pressure reduction in SHR subjected to transient captopril treatment in youth: possible mechanisms. Physiol Res. 2008;57:495–498. doi: 10.33549/physiolres.931615. PubMed DOI
Pravenec M, Klír P, Křen V, Zicha J, Kuneš J. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens. 1989;7:217–221. doi: 10.1097/00004872-198903000-00008. PubMed DOI
Kuneš J, Křen V, Klír P, Zicha J, Pravenec M. Genetic determination of heart and kidney weights studied using a set of recombinant inbred strains: the relationship to blood pressure. J Hypertens. 1990;8:1091–1095. doi: 10.1097/00004872-199012000-00004. PubMed DOI
Kuneš J, Dobešová Z, Musilová A, Zídek V, Vorlíček J, Pravenec M, Křen V, Zicha J. Hemodynamic characterization of recombinant inbred strains: twenty years later. Hypertens Res. 2008;31:1659–1668. doi: 10.1291/hypres.31.1659. PubMed DOI
Pravenec M, Křen V, Kuneš J, Scicli AG, Carretero OA, Simonet L, Kurtz TW. Cosegregation of blood pressure with a kallikrein gene family polymorphism. Hypertension. 1991;17:242–246. doi: 10.1161/01.HYP.17.2.242. PubMed DOI
Pravenec M, Simonet L, Křen V, Kuneš J, Levan G, Szpirer J, Szpirer C, Kurtz T. The rat renin gene: assignment to chromosome 13 and linkage to the regulation of blood pressure. Genomics. 1991;9:466–472. doi: 10.1016/0888-7543(91)90412-8. PubMed DOI
Pravenec M, Gauguier D, Schott JJ, Buard J, Křen V, Bílá V, Szpirer C, Szpirer J, Wang JM, Huang H, et al. Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. J Clin Invest. 1995;96:1973–1978. doi: 10.1172/JCI118244. PubMed DOI PMC
Bottger A, van Lith HA, Křen V, Křenová D, Bílá V, Vorlíček J, Zídek V, Musilová A, Zdobinská M, Wang JM, van Zutphen BF, Kurtz TW, Pravenec M. Quantitative trait loci influencing cholesterol and phospholipid phenotypes map to chromosomes that contain genes regulating blood pressure in the spontaneously hypertensive rat. J Clin Invest. 1996;98:856–862. doi: 10.1172/JCI118858. PubMed DOI PMC
Pravenec M, Gauguier D, Schott JJ, Buard J, Křen V, Bílá V, Szpirer C, Szpirer J, Wang JM, Huang H, St Lezin E, Spence MA, Flodman P, Printz M, Lathrop GM, Vergnaud G, Kurtz TW. A genetic linkage map of the rat derived from recombinant inbred strains. Mamm Genome. 1996;7:117–127. doi: 10.1007/s003359900031. PubMed DOI
Křen V, Pravenec M, Lu S, Křenová D, Wang JM, Wang N, Merriouns T, Wong A, St Lezin E, Lau D, Szpirer C, Szpirer J, Kurtz TW. Genetic isolation of a region of chromosome 8 that exerts major effects on blood pressure and cardiac mass in the spontaneously hypertensive rat. J Clin Invest. 1997;99:577–581. doi: 10.1172/JCI119198. PubMed DOI PMC
Aitman TJ, Gotoda T, Evans AL, Imrie H, Heath KE, Trembling PM, Truman H, Wallace CA, Rahman A, Doré C, Flint J, Křen V, Zídek V, Kurtz TW, Pravenec M, Scott J. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet. 1997;16:197–201. doi: 10.1038/ng0697-197. PubMed DOI
Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St Lezin E, Kurtz TW, Křen V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999;21:76–83. doi: 10.1038/5013. PubMed DOI
Pravenec M, Landa V, Zídek V, Musilová A, Křen V, Kazdová L, Aitman TJ, Glazier AM, Ibrahimi A, Abumrad NA, Qi N, Wang JM, St Lezin EM, Kurtz TW. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet. 2001;27:156–158. doi: 10.1038/84777. PubMed DOI
Hübner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilová A, Křen V, Causton H, Game L, Born G, Schmidt S, Müller A, Cook SA, Kurtz TW, Whittaker J.
Pravenec M, Aitman TJ. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet. 2005;37:243–253. doi: 10.1038/ng1522. PubMed DOI
Guryev V, Saar K, Adamovic T, Verheul M, van Heesch SA, Cook S, Pravenec M, Aitman T, Jacob H, Shull JD, Hubner N, Cuppen E. Distribution and functional impact of DNA copy number variation in the rat. Nat Genet. 2008;40:538–545. doi: 10.1038/ng.141. PubMed DOI
Pravenec M, Churchill PC, Churchill MC, Viklický O, Kazdová L, Aitman TJ, Petretto E, Hubner N, Wallace CA, Zimdahl H, Zídek V, Landa V, Dunbar J, Bidani A, Griffin K, Qi N, Maxová M, Křen V, Mlejnek P, Wang J, Kurtz TW. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet. 2008;40:952–954. doi: 10.1038/ng.164. PubMed DOI
Pravenec M, Zídek V, Landa V, Šimáková M, Mlejnek P, Kazdová L, Bílá V, Křenová D, Křen V. Genetic analysis of “metabolic syndrome” in the spontaneously hypertensive rat. Physiol Res. 2004;53(Suppl 1):S15–S22. doi: 10.33549/physiolres.930000.53.S15. PubMed DOI
Pravenec M, Křen V, Landa V, Mlejnek P, Musilová A, Šilhavý J, Šimáková M, Zídek V. Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res. 2014;63(Suppl 1):S1–S8. doi: 10.33549/physiolres.932622. PubMed DOI
Rapp JP, Dene H. Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension. 1985;7:340–349. https://doi.org/10.1161/01.HYP.7.3_Pt_1.340, https://doi.org/10.1161/01.HYP.7.3.340. PubMed DOI
Zicha J, Byšková E, Kuneš J, Pohlová I, Jelínek J. Sodium pump activity in young and adult salt hypertensive Dahl rats. Klin Wochenschr. 1987;65(Suppl 8):76–81. PubMed
Kuneš J, Zicha J, Hamet P. Effects of dietary calcium on the development of salt hypertension in young and adult Dahl rats. J Hypertens. 1988;6(Suppl 4):S225–S227. doi: 10.1097/00004872-198812040-00067. PubMed DOI
Kuneš J, Leontjeva GR, Byšková E, Pohlová I, Govyrin VA, Zicha J. Adrenergic innervation of blood vessels in Dahl rats with salt hypertension. Clin Exp Hypertens A. 1991;13:1343–1355. doi: 10.3109/10641969109048797. PubMed DOI
Dobešová Z, Kuneš J, Zicha J. Body fluid alterations and organ hypertrophy in age-dependent salt hypertension of Dahl rats. Physiol Res. 1995;44:377–387. PubMed
Nedvídek J, Zicha J. Baroreflex control of heart rate in young and adult salt hypertensive inbred Dahl rats. Physiol Res. 2000;49:323–330. PubMed
Zicha J, Duhm J. Kinetics of Na+ and K+ transport in red blood cells of Dahl rats. Effects of age and salt. Hypertension. 1990;15:612–627. doi: 10.1161/01.HYP.15.6.612. PubMed DOI
Zicha J, Negrin CD, Dobešová Z, Carr F, Vokurková M, McBride MW, Kuneš J, Dominiczak AF. Altered Na+-K+ pump activity and plasma lipids in salt-hypertensive Dahl rats: relationship to Atp1a1 gene. Physiol Genomics. 2001;6:99–104. doi: 10.1152/physiolgenomics.2001.6.2.99. PubMed DOI
Vokurková M, Dobešová Z, Kuneš J, Zicha J. Membrane ion transport in erythrocytes of salt hypertensive Dahl rats and their F2 hybrids: the importance of cholesterol. Hypertens Res. 2003;26:397–404. doi: 10.1291/hypres.26.397. PubMed DOI
Vokurková M, Nováková O, Dobešová Z, Kuneš J, Zicha J. Relationships between membrane lipids and ion transport in red blood cells of Dahl rats. Life Sci. 2005;77:1452–1464. doi: 10.1016/j.lfs.2005.03.014. PubMed DOI
Bin Talib HK, Zicha J. Red cell sodium in DOCA-salt hypertension: a Brattleboro study. Life Sci. 1992;50:1021–1030. doi: 10.1016/0024-3205(92)90097-9. PubMed DOI
Bin Talib HK, Kuneš J, Zicha J. Complete dissociation of DOCA-salt hypertension and red cell ion transport alterations. Life Sci. 1992;51:PL243–PL248. doi: 10.1016/0024-3205(92)90044-P. PubMed DOI
Kuneš J, Bin Talib HK, Dobešová Z, Vrána A, Zicha J. Erythrocyte ion transport alterations in hypertriglyceridaemic rats. Clin Sci (Lond) 1994;86:11–13. doi: 10.1042/cs0860011. PubMed DOI
Bin Talib HK, Dobešová Z, Klír P, Křen V, Kuneš J, Pravenec M, Zicha J. Association of red blood cell sodium leak with blood pressure in recombinant inbred strains. Hypertension. 1992;20:575–582. doi: 10.1161/01.HYP.20.4.575. PubMed DOI
Orlov SN, Petrunyaka VV, Pokudin NI, Kotelevtsev YV, Postnov YV, Kunes J, Zicha J. Cation transport and adenosine triphosphatase activity in rat erythrocytes: a comparison of spontaneously hypertensive rats with the normotensive Brown-Norway strain. J Hypertens. 1991;9:977–982. doi: 10.1097/00004872-199110000-00012. PubMed DOI
Zicha J. Red cell ion transport abnormalities in experimental hypertension. Fundam Clin Pharmacol. 1993;7(3–4):129–41. doi: 10.1111/j.1472-8206.1993.tb00227.x. PubMed DOI
Zicha J, Kuneš J. Membrane defects and the development of hypertension. In: McCarty R, Blizard DA, Chevalier RL, editors. Handbook of Hypertension, Vol. 19, Development of Hypertensive Phenotype: Basic and Clinical Studies. Elsevier; Amsterdam: 1999. pp. 213–251.
Hamet P, Tremblay J, Malo D, Kuneš J, Hashimoto T. Genetic hypertension is characterized by the abnormal expression of a gene localized in major histocompatibility complex HSP70. Transplant Proc. 1990;22:2566–2567. PubMed
Hamet P, Kong D, Pravenec M, Kuneš J, Křen V, Klir P, Sun YL, Tremblay J. Restriction fragment length polymorphism of hsp70 gene, localized in the RT1 complex, is associated with hypertension in spontaneously hypertensive rats. Hypertension. 1992;19:611–614. doi: 10.1161/01.HYP.19.6.611.a. PubMed DOI
Kuneš J, Poirier M, Tremblay J, Hamet P. Expression of hsp70 gene in lymphocytes from normotensive and hypertensive humans. Acta Physiol Scand. 1992;146:307–311. doi: 10.1111/j.1748-1716.1992.tb09424.x. PubMed DOI
Hamet P, Kaiser MA, Sun Y, Pagé V, Vincent M, Křen V, Pravenec M, Kuneš J, Tremblay J, Samani NJ. HSP27 locus cosegregates with left ventricular mass independently of blood pressure. Hypertension. 1996;28:1112–1117. PubMed
Hamet P, Sun YL, Malo D, Kong D, Křen V, Pravenec M, Kuneš J, Dumas P, Richard L, Gagnon F, et al. Genes of stress in experimental hypertension. Clin Exp Pharmacol Physiol. 1994;21:907–911. doi: 10.1111/j.1440-1681.1994.tb02464.x. PubMed DOI
Kuneš J, Zicha J. Association of salt sensitivity in rats with genes of the major histocompatibility complex. Hypertension. 1994;24:645–647. doi: 10.1161/01.HYP.24.6.645. PubMed DOI
Vrána A, Kazdová L. The hereditary hypertriglyceridemic nonobese rat: an experimental model of human hypertriglyceridemia. Transplant Proc. 1990;22:2579. PubMed
Štolba P, Dobešová Z, Hušek P, Opltová H, Zicha J, Vrána A, Kuneš J. The hypertriglyceridemic rat as a genetic model of hypertension and diabetes. Life Sci. 1992;51:733–740. doi: 10.1016/0024-3205(92)90482-5. PubMed DOI
Zicha J, Dobešová Z, Kuneš J. Plasma triglycerides and red cell ion transport alterations in genetically hypertensive rats. Hypertension. 1997;30:636–640. doi: 10.1161/01.HYP.30.3.636. PubMed DOI
Ueno T, Tremblay J, Kuneš J, Zicha J, Dobešova Z, Pausova Z, Deng AY, Sun YL, Jacob HJ, Hamet P. Resolving the composite trait of hypertension into its pharmacogenetic determinants by acute pharmacological modulation of blood pressure regulatory systems. J Mol Med (Berl) 2003;81:51–60. doi: 10.1007/s00109-002-0394-7. PubMed DOI
Ueno T, Tremblay J, Kuneš J, Zicha J, Dobešová Z, Pausova Z, Deng AY, Sun Y, Jacob HJ, Hamet P. Gender-specific genetic determinants of blood pressure and organ weight: pharmacogenetic approach. Physiol Res. 2003;52:689–700. doi: 10.33549/physiolres.930000.52.689. PubMed DOI
Ueno T, Tremblay J, Kuneš J, Zicha J, Dobešová Z, Pausova Z, Deng AY, Sun YL, Jacob HJ, Hamet P. Rat model of familial combined hyperlipidemia as a result of comparative mapping. Physiol Genomics. 2004;17:38–47. doi: 10.1152/physiolgenomics.00043.2003. PubMed DOI
Kadlecová M, Čejka J, Zicha J, Kuneš J. Does Cd36 gene play a key role in disturbed glucose and fatty acid metabolism in Prague hypertensive hypertriglyceridemic rats? Physiol Res. 2004;53:265–271. doi: 10.33549/physiolres.930000.53.265. PubMed DOI
Kadlecová M, Dobešová Z, Zicha J, Kuneš J. Abnormal Igf2 gene in Prague hereditary hypertriglyceridemic rats: its relation to blood pressure and plasma lipids. Mol Cell Biochem. 2008;314:37–43. doi: 10.1007/s11010-008-9762-0. PubMed DOI
Klimeš I, Vrána A, Kuneš J, Šeböková E, Dobešová Z, Štolba P, Zicha J. Hereditary hypertriglyceridemic rat: a new animal model of metabolic alterations in hypertension. Blood Press. 1995;4:137–142. doi: 10.3109/08037059509077585. PubMed DOI
Zicha J, Pecháňová O, Čačányiová S, Cebová M, Kristek F, Török J, Šimko F, Dobešová Z, Kuneš J. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res. 2006;55(Suppl 1):S49–S63. doi: 10.33549/physiolres.930000.55.S1.49. PubMed DOI
Zicha J, Kuneš J, Le Quan Sang KH, Devynck MA. Regulation of the dynamic properties of platelet plasma membrane by intracellular sodium ions. Life Sci. 1993:521559–1565. doi: 10.1016/0024-3205(93)90056-9. PubMed DOI
Le Quan Sang KH, Kuneš J, Zicha J, Vincent M, Sassard J, Devynck MA. Platelet and erythrocyte membrane microviscosity in Lyon hypertensive rats. Am J Hypertens. 1994;7:276–281. doi: 10.1093/ajh/7.3.276. PubMed DOI
Kuneš J, Zicha J, Devynck MA. Erythrocyte membrane microviscosity and blood pressure in rats with salt-induced and spontaneous hypertension. J Hypertens. 1994;12:229–234. doi: 10.1097/00004872-199403000-00002. PubMed DOI
Zicha J, Pernollet MG, Kuneš J, Lacour B, Vincent M, Sassard J, Devynck MA. Alterations of cytosolic calcium in platelets and erythrocytes of Lyon hypertensive rats. Am J Hypertens. 1995;8:842–849. doi: 10.1016/0895-7061(95)00121-5. PubMed DOI
Zicha J, Kuneš J, David-Dufilho M, Pernollet MG, Devynck MA. Cell calcium handling and intracellular pH regulation in hereditary hypertriglyceridemic rats: reduced platelet response to thrombin stimulation. Life Sci. 1996;59:803–813. doi: 10.1016/0024-3205(96)00371-2. PubMed DOI
Devynck MA, Kuneš J, Le Quan Sang KH, Zicha J. Membrane microviscosity and plasma triacylglycerols in the rat. Clin Sci (Lond) 1998;94:79–85. doi: 10.1042/cs0940079. PubMed DOI
Zicha J, Kuneš J, Devynck MA. Abnormalities of membrane function and lipid metabolism in hypertension: a review. Am J Hypertens. 1999;12:315–331. doi: 10.1016/S0895-7061(98)00178-2. PubMed DOI
Kuneš J, Mazeaud MM, Devynck MA, Zicha J. Platelet hypoaggregability in hereditary hypertriglyceridemic rats: relation to plasma triglycerides. Thromb Res. 1997;88:347–353. doi: 10.1016/S0049-3848(97)00264-8. PubMed DOI
Kuneš J, Devynck MA, Zicha J. Chronic changes in plasma triglyceride levels do modify platelet membrane microviscosity in rats. Life Sci. 2000;67:959–967. doi: 10.1016/S0024-3205(00)00691-3. PubMed DOI
Zicha J, Kuneš J, Devynck MA. Platelet calcium handling is different in rats with salt-dependent and spontaneous forms of genetic hypertension. Am J Hypertens. 1996;9:812–818. doi: 10.1016/0895-7061(96)00101-X. PubMed DOI
Zicha J, Kuneš J, Ben-Ishay D, Devynck MA. Abnormal regulation of cytosolic calcium and pH in platelets of Sabra rats in early phases of salt hypertension development. Can J Physiol Pharmacol. 1996;74:1222–1228. doi: 10.1139/y96-134. PubMed DOI
Zicha J, David-Dufilho M, Kuneš J, Pernollet MG, Devynck MA. Cytosolic pH and calcium in Dahl salt-sensitive and salt-resistant rats: the relationship to plasma lipids. J Hypertens. 1997;15:1715–1721. doi: 10.1097/00004872-199715120-00078. PubMed DOI
Zicha J, Sang KH, Kuneš J, Devynck MA. Membrane microviscosity, blood pressure and cytosolic pH in Dahl rats: the influence of plasma lipids. J Hypertens. 1999;17:785–792. doi: 10.1097/00004872-199917060-00010. PubMed DOI
Červenka L, Heller J. A comparison of the effect of feeding a low-protein diet and of pharmacological intervention on the course of ablation nephropathy in the rat. Ren Fail. 1995;17:27–35. doi: 10.3109/08860229509036372. PubMed DOI
Červenka L, Heller J. Comparison of the effects of a low-protein diet with the effects of a converting enzyme inhibitor on the progression of renal insufficiency in hypertensive rats. Ren Fail. 1996;18:173–180. doi: 10.3109/08860229609052787. PubMed DOI
Červenka L, Wang CT, Navar LG. Effects of acute AT1 receptor blockade by candesartan on arterial pressure and renal function in rats. Am J Physiol. 1998;274:F940–F945. doi: 10.1152/ajprenal.1998.274.5.F940. PubMed DOI
Červenka L, Wang CT, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension. 1999;33:102–107. doi: 10.1161/01.HYP.33.1.102. PubMed DOI
Červenka L, Navar LG. Renal responses of the nonclipped kidney of two-kidney/one-clip Goldblatt hypertensive rats to type 1 angiotensin II receptor blockade with candesartan. J Am Soc Nephrol. 1999;10(Suppl 11):S197–S201. PubMed
Červenka L, Horáček V, Vaněčková I, Hubáček JA, Oliverio MI, Coffman TM, Navar LG. Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension. 2002;40:735–741. doi: 10.1161/01.HYP.0000036452.28493.74. PubMed DOI
Červenka L, Harrison-Bernard LM, Dipp S, Primrose G, Imig JD, El-Dahr SS. Early onset salt-sensitive hypertension in bradykinin B2 receptor null mice. Hypertension. 1999;34:176–180. doi: 10.1161/01.HYP.34.2.176. PubMed DOI
Červenka L, Malý J, Karasová L, Šímová M, Vítko Š, Hellerová S, Heller J, El-Dahr SS. Angiotensin II-induced hypertension in bradykinin B2 receptor knockout mice. Hypertension. 2001;37:967–973. doi: 10.1161/01.HYP.37.3.967. PubMed DOI
Červenka L, Vaněčková I, Malý J, Horáček V, El-Dahr SS. Genetic inactivation of the B2 receptor in mice worsens two-kidney, one-clip hypertension: role of NO and the AT2 receptor. J Hypertens. 2003;21:1531–1538. doi: 10.1097/00004872-200308000-00018. PubMed DOI
Kopkan L, Kramer HJ, Husková Z, Vaňourková Z, Bäcker A, Bader M, Ganten D, Červenka L. Plasma and kidney angiotensin II levels and renal functional responses to AT1 receptor blockade in hypertensive Ren-2 transgenic rats. J Hypertens. 2004;22:819–825. doi: 10.1097/00004872-200404000-00026. PubMed DOI
Červenka L, Vaněčková I, Husková Z, Vaňourková Z, Erbanová M, Thumová M, Škaroupková P, Opočenský M, Malý J, Čertíková Chábová V, Tesař V, Bürgelová M, Viklický O, Teplan V, Želízko M, Kramer HJ, Navar LG. Pivotal role of angiotensin II receptor subtype 1A in the development of two-kidney, one-clip hypertension: study in angiotensin II receptor subtype 1A knockout mice. J Hypertens. 2008 Jul;26(7):1379–89. doi: 10.1097/HJH.0b013e3282fe6eaa. PubMed DOI PMC
Bürgelová M, Kramer HJ, Teplan V, Thumová M, Červenka L. Effects of angiotensin-(1–7) blockade on renal function in rats with enhanced intrarenal Ang II activity. Kidney Int. 2005;67:1453–1461. doi: 10.1111/j.1523-1755.2005.00222.x. PubMed DOI
Bürgelová M, Vaňourková Z, Thumová M, Dvořák P, Opočenský M, Kramer HJ, Želízko M, Malý J, Bader M, Červenka L. Impairment of the angiotensin-converting enzyme 2-angiotensin-(1–7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension. J Hypertens. 2009;27:1988–2000. doi: 10.1097/HJH.0b013e32832f0d06. PubMed DOI
Červenka L, Kramer HJ, Malý J, Heller J. Role of nNOS in regulation of renal function in angiotensin II-induced hypertension. Hypertension. 2001;38:280–285. doi: 10.1161/01.HYP.38.2.280. PubMed DOI
Červenka L, Kramer HJ, Malý J, Vaněčková I, Bäcker A, Bokemeyer D, Bader M, Ganten D, Mitchell KD. Role of nNOS in regulation of renal function in hypertensive Ren-2 transgenic rats. Physiol Res. 2002;51:571–580. doi: 10.33549/physiolres.930316. PubMed DOI
Vaněčková I, Kramer HJ, Novotná J, Kazdová L, Opočenský M, Bader M, Ganten D, Červenka L. Roles of nitric oxide and oxidative stress in the regulation of blood pressure and renal function in prehypertensive Ren-2 transgenic rats. Kidney Blood Press Res. 2005;28:117–126. doi: 10.1159/000084649. PubMed DOI
Kopkan L, Husková Z, Vaňourková Z, Thumová M, Škaroupková P, Červenka L, Majid DS. Superoxide and its interaction with nitric oxide modulates renal function in prehypertensive Ren-2 transgenic rats. J Hypertens. 2007;25:2257–2265. doi: 10.1097/HJH.0b013e3282efb195. PubMed DOI
Kopkan L, Červenka L. Renal interactions of renin-angiotensin system, nitric oxide and superoxide anion: implications in the pathophysiology of salt-sensitivity and hypertension. Physiol Res. 2009;58(Suppl 2):S55–S68. doi: 10.33549/physiolres.931917. PubMed DOI
Husková Z, Kramer HJ, Vaňourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens. 2006;24:517–527. doi: 10.1097/01.hjh.0000209988.51606.c7. PubMed DOI
Husková Z, Kramer H, Vaňourková Z, Thumová M, Malý J, Opočenský M, Škaroupková P, Kolský A, Vernerová Z, Červenka L. Effects of dietary salt load and salt depletion on the course of hypertension and angiotensin II levels in male and female heterozygous Ren-2 transgenic rats. Kidney Blood Press Res. 2007;30:45–55. doi: 10.1159/000099028. PubMed DOI
Husková Z, Kramer HJ, Thumová M, Vaňourková Z, Bürgelová M, Teplan V, Malý J, Červenka L. Effects of anesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press Res. 2006;29:74–83. doi: 10.1159/000092981. PubMed DOI
Dvořák P, Kramer HJ, Bäcker A, Malý J, Kopkan L, Vaněčková I, Vernerová Z, Opočenský M, Tesař V, Bader M, Ganten D, Janda J, Červenka L. Blockade of endothelin receptors attenuates end-organ damage in homozygous hypertensive ren-2 transgenic rats. Kidney Blood Press Res. 2004;27:248–258. doi: 10.1159/000080052. PubMed DOI
Vaněčková I, Kramer HJ, Bäcker A, Vernerová Z, Opočenský M, Červenka L. Early endothelin-A receptor blockade decreases blood pressure and ameliorates end-organ damage in homozygous Ren-2 rats. Hypertension. 2005;46:969–974. doi: 10.1161/01.HYP.0000173426.06832.b5. PubMed DOI
Opočenský M, Kramer HJ, Bäcker A, Vernerová Z, Eis V, Červenka L, Čertíková Chábová V, Tesař V, Vaněčková I. Late-onset endothelin-A receptor blockade reduces podocyte injury in homozygous Ren-2 rats despite severe hypertension. Hypertension. 2006;48:965–971. doi: 10.1161/01.HYP.0000245117.57524.d6. PubMed DOI
Vernerová Z, Kramer HJ, Bäcker A, Červenka L, Opočenský M, Husková Z, Vaňourková Z, Eis V, Chábová VC, Tesař V, Malý J, Vaněčková I. Late-onset endothelin receptor blockade in hypertensive heterozygous REN-2 transgenic rats. Vascul Pharmacol. 2008;48:165–173. doi: 10.1016/j.vph.2008.01.009. PubMed DOI
Čertíková Chábová V, Kramer HJ, Vaněčková I, Thumová M, Škaroupková P, Tesař V, Falck JR, Imig JD, Červenka L. The roles of intrarenal 20-hydroxyeicosatetraenoic and epoxyeicosatrienoic acids in the regulation of renal function in hypertensive Ren-2 transgenic rats. Kidney Blood Press Res. 2007;30:335–346. doi: 10.1159/000107710. PubMed DOI
Čertíková Chábová V, Kramer HJ, Vaněčková I, Vernerová Z, Eis V, Tesař V, Škaroupková P, Thumová M, Schejbalová S, Husková Z, Vaňourková Z, Kolský A, Imig JD, Červenka L. Effects of chronic cytochrome P-450 inhibition on the course of hypertension and end-organ damage in Ren-2 transgenic rats. Vascul Pharmacol. 2007;47:145–159. doi: 10.1016/j.vph.2007.05.005. PubMed DOI
Čertíková Chábová V, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Kujal P, Vernerová Z, Vaňourková Z, Kopkan L, Kramer HJ, Falck JR, Imig JD, Hammock BD, Vaněčková I, Červenka L. Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats. Clin Sci (Lond) 2010;118:617–632. doi: 10.1042/CS20090459. PubMed DOI PMC
Vaňourková Z, Kramer HJ, Husková Z, Vaněčková I, Opočenský M, Čertíková Chábová V, Tesař V, Škaroupková P, Thumová M, Dohnalová M, Mullins JJ, Červenka L. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens. 2006;24:2465–2472. doi: 10.1097/01.hjh.0000251909.00923.22. PubMed DOI
Erbanová M, Thumová M, Husková Z, Vaněčková I, Vaňourková Z, Mullins JJ, Kramer HJ, Bürgelová M, Rakušan D, Červenka L. Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2009;27:575–586. doi: 10.1097/HJH.0b013e32831cbd5a. PubMed DOI
Bačáková L, Kuneš J. Sex-dependent differences in growth of vascular smooth muscles cells from spontaneously hypertensive rats. Physiol Res. 1995;44:127–130. PubMed
Bačáková L, Kuneš J. Gender differences in growth of vascular smooth muscle cells isolated from hypertensive and normotensive rats. Clin Exp Hypertens. 2000 Jan;22(1):33–44. doi: 10.1081/CEH-100100060. PubMed DOI
Loukotová J, Bačáková L, Zicha J, Kuneš J. The influence of angiotensin II on sex-dependent proliferation of aortic VSMC isolated from SHR. Physiol Res. 1998;47:501–505. PubMed
Loukotová J, Kuneš J, Zicha J. Gender-dependent difference in cell calcium handling in VSMC isolated from SHR: the effect of angiotensin II. J Hypertens. 2002;20:2213–2219. doi: 10.1097/00004872-200211000-00021. PubMed DOI
Zicha J, Kuneš J, Lébl M, Pohlová I, Jelínek J. Haemodynamics and the participation of pressor systems in young and adult rats with age-dependent DOCA-salt hypertension. Physiol Bohemoslov. 1987;36:89–92. PubMed
Hatzinikolaou P, Gavras H, Brunner HR, Gavras I. Role of vasopressin, catecholamines, and plasma volume in hypertonic saline-induced hypertension. Am J Physiol. 1981 Jun;240:H827–H831. doi: 10.1152/ajpheart.1981.240.6.H827. PubMed DOI
Gavras H, Hatzinikolaou P, North WG, Bresnahan M, Gavras I. Interaction of the sympathetic nervous system with vasopressin and renin in the maintenance of blood pressure. Hypertension. 1982;4:400–405. doi: 10.1161/01.HYP.4.3.400. PubMed DOI
Burnier M, Biollaz J, Brunner DB, Gavras H, Brunner HR. Alpha and beta adrenoceptor blockade in normotensive and deoxycorticosterone (DOC)-hypertensive rats; plasma vasopressin and vasopressin pressor effect. J Pharmacol Exp Ther. 1983;224:222–227. PubMed
Waeber B, Nussberger J, Brunner HR. Alpha 1-adrenoceptor blockade in renal hypertensive rats with low and high renin levels. Am J Physiol. 1984;246:H573–H578. doi: 10.1152/ajpheart.1984.246.4.H573. PubMed DOI
Minami N, Imai Y, Hashimoto J, Abe K. Contribution of vascular nitric oxide to basal blood pressure in conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Clin Sci (Lond) 1995;89:177–182. doi: 10.1042/cs0890177. PubMed DOI
Kazda S, Pohlová I, Bíbr B, Kočková J. Norepinephrine content of tissues in Doca-hypertensive rats. Am J Physiol. 1969;216:1472–1475. doi: 10.1152/ajplegacy.1969.216.6.1472. PubMed DOI
Křeček J, Doležel S, Dlouhá H, Zicha J. Sympathetic nervous system and age-dependent salt hypertension in Brattleboro rats. Clin Exp Hypertens A. 1987;9:2075–2093. https://doi.org/10.1080/07300077.1987.11978716, https://doi.org/10.3109/10641968709159076. PubMed DOI
Zicha J, Dobešová Z, Kuneš J. Relative deficiency of nitric oxide-dependent vasodilation in salt-hypertensive Dahl rats: the possible role of superoxide anions. J Hypertens. 2001;19:247–254. doi: 10.1097/00004872-200102000-00011. PubMed DOI
Kuneš J, Dobešová Z, Zicha J. Altered balance of main vasopressor and vasodepressor systems in rats with genetic hypertension and hypertriglyceridaemia. Clin Sci (Lond) 2002;102:269–277. doi: 10.1042/cs1020269. PubMed DOI
Dobešová Z, Kuneš J, Zicha J. The altered balance between sympathetic nervous system and nitric oxide in salt hypertensive Dahl rats: ontogenetic and F2 hybrid studies. J Hypertens. 2002;20:945–955. doi: 10.1097/00004872-200205000-00030. PubMed DOI
Pecháňová O, Bernátová I, Pelouch V, Šimko F. Protein remodelling of the heart in NO-deficient hypertension: the effect of captopril. J Mol Cell Cardiol. 1997;29:3365–3374. doi: 10.1006/jmcc.1997.0566. PubMed DOI
Bernátová I, Pecháňová O, Pelouch V, Šimko F. Regression of chronic L-NAME-treatment-induced left ventricular hypertrophy: effect of captopril. J Mol Cell Cardiol. 2000;32:177–185. doi: 10.1006/jmcc.1999.1071. PubMed DOI
Bernátová I, Pecháňová O, Babál P, Kyselá S, Štvrtina S, Andriantsitohaina R. Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am J Physiol Heart Circ Physiol. 2002;282:H942–H948. doi: 10.1152/ajpheart.00724.2001. PubMed DOI
Pecháňová O, Dobešová Z, Čejka J, Kuneš J, Zicha J. Vasoactive systems in L-NAME hypertension: the role of inducible nitric oxide synthase. J Hypertens. 2004;22:167–173. doi: 10.1097/00004872-200401000-00026. PubMed DOI
Zicha J, Pecháňová O, Dobešová Z, Kuneš J. Hypertensive response to chronic NG-nitro-L-arginine methyl ester (L-NAME) treatment is similar in immature and adult Wistar rats. Clin Sci (Lond) 2003;105:483–489. doi: 10.1042/CS20030078. PubMed DOI
Rauchová H, Pecháňová O, Kuneš J, Vokurková M, Dobešová Z, Zicha J. Chronic N-acetylcysteine administration prevents development of hypertension in Nω-nitro-L-arginine methyl ester-treated rats: the role of reactive oxygen species. Hypertens Res. 2005;28:475–482. doi: 10.1291/hypres.28.475. PubMed DOI
Zicha J, Dobešová Z, Kuneš J. Antihypertensive mechanisms of chronic captopril or N-acetylcysteine treatment in L-NAME hypertensive rats. Hypertens Res. 2006;29:1021–1027. doi: 10.1291/hypres.29.1021. PubMed DOI
Zicha J, Kuneš J, Vranková S, Jendeková L, Dobešová Z, Pintérová M, Pecháňová O. Influence of pertussis toxin pretreatment on the development of L-NAME-induced hypertension. Physiol Res. 2009;58:751–755. doi: 10.33549/physiolres.931898. PubMed DOI
Pecháňová O, Zicha J, Kojšová S, Dobešová Z, Jendeková L, Kuneš J. Effect of chronic N-acetylcysteine treatment on the development of spontaneous hypertension. Clin Sci (Lond) 2006;110:235–242. doi: 10.1042/CS20050227. PubMed DOI
Pecháňová O, Zicha J, Paulis L, Zenebe W, Dobešová Z, Kojšová S, Jendeková L, Sládková M, Dovinová I, Simko F, Kuneš J. The effect of N-acetylcysteine and melatonin in adult spontaneously hypertensive rats with established hypertension. Eur J Pharmacol. 2007;561:129–136. doi: 10.1016/j.ejphar.2007.01.035. PubMed DOI
Kuneš J, Zicha J. Developmental windows and environment as important factors in the expression of genetic information: a cardiovascular physiologist’s view. Clin Sci (Lond) 2006;111:295–305. doi: 10.1042/CS20050271. PubMed DOI
Kuneš J, Zicha J. The interaction of genetic and environmental factors in the etiology of hypertension. Physiol Res. 2009;58(Suppl 2):S33–S42. doi: 10.33549/physiolres.931913. PubMed DOI
Bengele HH, Solomon S. Development of renal response to blood volume expansion in the rat. Am J Physiol. 1974;227:364–368. doi: 10.1152/ajplegacy.1974.227.2.364. PubMed DOI
Brownie AC, Bernardis LL, Niwa T, Kamura S, Skelton FR. The influence of age and sex on the development of adrenal regeneration hypertension. Lab Invest. 1966;15:1342–1356. PubMed
Dahl LK, Knudsen KD, Heine M, Leitl G. Effects of chronic excess salt ingestion. Genetic influence on the development of salt hypertension in parabiotic rats: evidence for a humoral factor. J Exp Med. 1967;126:687–699. doi: 10.1084/jem.126.4.687. PubMed DOI PMC
Self LE, Battarbee HD, Gaar KA, Jr, Meneely GR. A vasopressor potentiator for norepinephrine in hypertensive rats. Proc Soc Exp Biol Med. 1976;153:7–12. doi: 10.3181/00379727-153-39470. PubMed DOI
Kojima I. Circulating digitalis-like substance is increased in DOCA-salt hypertension. Biochem Biophys Res Commun. 1984;122:129–136. doi: 10.1016/0006-291X(84)90449-2. PubMed DOI
Alaghband-Zadeh J, Fenton S, Hancock K, Millett J, de Wardener HE. Evidence that the hypothalamus may be a source of a circulating Na+-K+-ATPase inhibitor. J Endocrinol. 1983;98:221–226. doi: 10.1677/joe.0.0980221. PubMed DOI
Castaneda-Hernandez G, Godfraind T. Effect of high sodium intake on tissue distribution of endogenous digitalis-like material in the rat. Clin Sci (Lond) 1984;66:225–228. doi: 10.1042/cs0660225. PubMed DOI
Abel PW, Trapani A, Matsuki N, Ingram MJ, Ingram FD, Hermsmeyer K. Unaltered membrane properties of arterial muscle in Dahl strain genetic hypertension. Am J Physiol. 1981;241:H224–H227. doi: 10.1152/ajpheart.1981.241.2.H224. PubMed DOI
Overbeck HW, Ku DD, Rapp JP. Sodium pump activity in arteries of Dahl salt-sensitive rats. Hypertension. 1981;3:306–312. doi: 10.1161/01.HYP.3.3.306. PubMed DOI
Pamnani MB, Clough DL, Huot SJ, Haddy FJ. Vascular Na+-K+ pump activity in Dahl S and R rats. Proc Soc Exp Biol Med. 1980;165:440–444. doi: 10.3181/00379727-165-41001. PubMed DOI