Epoxyeicosatrienoic Acid Analog and 20-HETE Antagonist Combination Prevent Hypertension Development in Spontaneously Hypertensive Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P01 HL074167
NHLBI NIH HHS - United States
R01 DK126452
NIDDK NIH HHS - United States
PubMed
35111064
PubMed Central
PMC8802114
DOI
10.3389/fphar.2021.798642
PII: 798642
Knihovny.cz E-zdroje
- Klíčová slova
- 20-HETE antagonist, EET analog, epoxyeicosatrienoic acids, primary hypertension, spontaneously hypertensive rats,
- Publikační typ
- časopisecké články MeSH
Numerous studies indicate a significant role for cytochrome P-450-dependent arachidonic acid metabolites in blood pressure regulation, vascular tone, and control of renal function. Epoxyeicosatrienoic acids (EETs) exhibit a spectrum of beneficial effects, such as vasodilatory activity and anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. In the present study, the efficiency of EET-A (a stable analog of 14,15-EET) alone and combined with AAA, a novel receptor antagonist of 20-HETE, was tested in spontaneously hypertensive rats (SHR). Adult SHR (16 weeks old) were treated with two doses of EET-A (10 or 40 mg/kg/day). In the following experiments, we also tested selected substances in the prevention of hypertension development in young SHR (6 weeks old). Young rats were treated with EET-A or the combination of EET-A and AAA (both at 10 mg/kg/day). The substances were administered in drinking water for 4 weeks. Blood pressure was measured by telemetry. Once-a-week observation in metabolic cages was performed; urine, blood, and tissue samples were collected for further analysis. The combined treatment with AAA + EET-A exhibited antihypertensive efficiency in young SHR, which remained normotensive until the end of the observation in comparison to a control group (systolic blood pressure, 134 ± 2 versus 156 ± 5 mmHg, respectively; p < 0.05). Moreover the combined treatment also increased the nitric oxide metabolite excretion. Considering the beneficial impact of the combined treatment with EET-A and AAA in young rats and our previous positive results in adult SHR, we suggest that it is a promising therapeutic strategy not only for the treatment but also for the prevention of hypertension.
Center for Experimental Medicine Institute for Clinical and Experimental Medicine Prague Czechia
Department of Biochemistry University of Texas Southwestern Medical Center Dallas TX United States
Department of Immunology Medical University of Warsaw Warsaw Poland
Department of Pharmacology and Toxicology Medical College of Wisconsin Milwaukee WI United States
Zobrazit více v PubMed
Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. (1981). Power Spectrum Analysis of Heart Rate Fluctuation: A Quantitative Probe of Beat-To-Beat Cardiovascular Control. Science 213, 220–222. 10.1126/science.6166045 PubMed DOI
Alánová P., Husková Z., Kopkan L., Sporková A., Jíchová Š., Neckář J., et al. (2015). Orally Active Epoxyeicosatrienoic Acid Analog Does Not Exhibit Antihypertensive and reno- or Cardioprotective Actions in Two-Kidney, One-Clip Goldblatt Hypertensive Rats. Vascul. Pharmacol. 73, 45–56. 10.1016/j.vph.2015.08.013 PubMed DOI
Alonso-Galicia M., Drummond H. A., Reddy K. K., Falck J. R., Roman R. J. (1997). Inhibition of 20-HETE Production Contributes to the Vascular Responses to Nitric Oxide. Hypertension 29, 320–325. 10.1161/01.hyp.29.1.320 PubMed DOI
Apte R. S., Chen D. S., Ferrara N. (2019). VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 176, 1248–1264. 10.1016/j.cell.2019.01.021 PubMed DOI PMC
Aubert A. E., Ramaekers D., Beckers F., Breem R., Denef C., Van De Werf F., et al. (1999). The Analysis of Heart Rate Variability in Unrestrained Rats. Validation of Method and Results. Comput. Methods Programs Biomed. 60, 197–213. 10.1016/S0169-2607(99)00017-6 PubMed DOI
Battault S., Meziat C., Nascimento A., Braud L., Gayrard S., Legros C., et al. (2018). Vascular Endothelial Function Masks Increased Sympathetic Vasopressor Activity in Rats with Metabolic Syndrome. Am. J. Physiol. Heart Circ. Physiol. 314, H497–H507. 10.1152/ajpheart.00217.2017 PubMed DOI
Bhimani N. T., Kulkarni N. B., Kowale A., Salvi S. (2011). Effect of Pranayama on Stress and Cardiovascular Autonomic Function. Indian J. Physiol. Pharmacol. 55, 370–377. PubMed
Billman G. E., Sacha J., Werner B., Jelen P. J., Gąsior J. S. (2019). Editorial: Heart Rate Variability and Other Autonomic Markers in Children and Adolescents. Front. Physiol. 10, 1265. 10.3389/fphys.2019.01265 PubMed DOI PMC
Billman G. E. (2013). The Effect of Heart Rate on the Heart Rate Variability Response to Autonomic Interventions. Front. Physiol. 4, 222. 10.3389/fphys.2013.00222 PubMed DOI PMC
Brar T. K., Singh K. D., Kumar A. (2015). Effect of Different Phases of Menstrual Cycle on Heart Rate Variability (HRV). J. Clin. Diagn. Res. 9, CC01–4. 10.7860/JCDR/2015/13795.6592 PubMed DOI PMC
Campbell W. B., Imig J. D., Schmitz J. M., Falck J. R. (2017). Orally Active Epoxyeicosatrienoic Acid Analogs. J. Cardiovasc. Pharmacol. 70, 211–224. 10.1097/FJC.0000000000000523 PubMed DOI PMC
Capdevila J., Wang W. (2013). Role of Cytochrome P450 Epoxygenase in Regulating Renal Membrane Transport and Hypertension. Curr. Opin. Nephrol. Hypertens. 22, 163–169. 10.1097/MNH.0b013e32835d911e PubMed DOI PMC
Capdevila J. H., Pidkovka N., Mei S., Gong Y., Falck J. R., Imig J. D., et al. (2014). The Cyp2c44 Epoxygenase Regulates Epithelial Sodium Channel Activity and the Blood Pressure Responses to Increased Dietary Salt. J. Biol. Chem. 289, 4377–4386. 10.1074/jbc.M113.508416 PubMed DOI PMC
Carthy E. R. (2014). Autonomic Dysfunction in Essential Hypertension: A Systematic Review. Ann. Med. Surg. (Lond) 3, 2–7. 10.1016/j.amsu.2013.11.002 PubMed DOI PMC
Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., et al. (2018). Two Pharmacological Epoxyeicosatrienoic Acid-Enhancing Therapies Are Effectively Antihypertensive and Reduce the Severity of Ischemic Arrhythmias in Rats with Angiotensin II-dependent Hypertension. J. Hypertens. 36, 1326–1341. 10.1097/HJH.0000000000001708 PubMed DOI PMC
Claydon V. E., Krassioukov A. V. (2008). Clinical Correlates of Frequency Analyses of Cardiovascular Control after Spinal Cord Injury. Am. J. Physiol. Heart Circ. Physiol. 294, H668–H678. 10.1152/ajpheart.00869.2007 PubMed DOI
D'Ascenzi F., Alvino F., Natali B. M., Cameli M., Palmitesta P., Boschetti G., et al. (2014). Precompetitive Assessment of Heart Rate Variability in Elite Female Athletes during Play Offs. Clin. Physiol. Funct. Imaging 34, 230–236. 10.1111/cpf.12088 PubMed DOI
Dalal J., Dasbiswas A., Sathyamurthy I., Maddury S. R., Kerkar P., Bansal S., et al. (2019). Heart Rate in Hypertension: Review and Expert Opinion. Int. J. Hypertens. 2019, 1–6. 10.1155/2019/2087064 PubMed DOI PMC
Dobrek Ł., Baranowska A., Skowron B., Thor P. J. (2013). Autonomic Nervous System Activity Assessment by Heart Rate Variability in Experimental Bladder Outlet Obstruction. Postepy Hig Med. Dosw (Online) 67, 221–228. 10.5604/17322693.1043336 PubMed DOI
Doris P. A. (2017). Genetics of Hypertension: an Assessment of Progress in the Spontaneously Hypertensive Rat. Physiol. Genomics 49, 601–617. 10.1152/physiolgenomics.00065.2017 PubMed DOI PMC
Elmarakby A. A. (2012). Reno-protective Mechanisms of Epoxyeicosatrienoic Acids in Cardiovascular Disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R321–R330. 10.1152/ajpregu.00606.2011 PubMed DOI
Eremina V., Sood M., Haigh J., Nagy A., Lajoie G., Ferrara N., et al. (2003). Glomerular-specific Alterations of VEGF-A Expression lead to Distinct Congenital and Acquired Renal Diseases. J. Clin. Invest. 111, 707–716. 10.1172/JCI17423 PubMed DOI PMC
Ernst G. (2017). Heart-Rate Variability-More Than Heart Beats? Front. Public Heal. 5, 240. 10.3389/fpubh.2017.00240 PubMed DOI PMC
Falck J. R., Krishna U. M., Reddy Y. K., Kumar P. S., Reddy K. M., Hittner S. B., et al. (2003). Comparison of Vasodilatory Properties of 14,15-EET Analogs: Structural Requirements for Dilation. Am. J. Physiol. Heart Circ. Physiol. 284, H337–H349. 10.1152/ajpheart.00831.2001 PubMed DOI
Gangadhariah M. H., Luther J. M., Garcia V., Paueksakon P., Zhang M. Z., Hayward S. W., et al. (2014). Hypertension Is a Major Contributor to 20-hydroxyeicosatetraenoic Acid-Mediated Kidney Injury in Diabetic Nephropathy. J. Am. Soc. Nephrol. 26, 597–610. 10.1681/asn.2013090980 PubMed DOI PMC
Garrett M. R., Joe B., Yerga-Woolwine S. (2006). Genetic Linkage of Urinary Albumin Excretion in Dahl Salt-Sensitive Rats: Influence of Dietary Salt and Confirmation Using Congenic Strains. Physiol. Genomics 25, 39–49. 10.1152/physiolgenomics.00150.2005 PubMed DOI
Gawrys O., Husková Z., Baranowska I., Walkowska A., Sadowski J., Kikerlová S., et al. (2020a). Combined Treatment with Epoxyeicosatrienoic Acid Analog and 20-hydroxyeicosatetraenoic Acid Antagonist Provides Substantial Hypotensive Effect in Spontaneously Hypertensive Rats. J. Hypertens. 38, 1802–1810. 10.1097/HJH.0000000000002462 PubMed DOI
Gawryś O., Baranowska I., Gawarecka K., Świeżewska E., Dyniewicz J., Olszyński K. H., et al. (2018). Innovative Lipid-Based Carriers Containing Cationic Derivatives of Polyisoprenoid Alcohols Augment the Antihypertensive Effectiveness of Candesartan in Spontaneously Hypertensive Rats. Hypertens. Res. 41, 234–245. 10.1038/s41440-018-0011-y PubMed DOI
Gawrys O., Rak M., Baranowska I., Bobis-Wozowicz S., Szaro K., Madeja Z., et al. (2020b). Polyprenol-Based Lipofecting Agents for In Vivo Delivery of Therapeutic DNA to Treat Hypertensive Rats. Biochem. Genet. 59, 62–82. 10.1007/s10528-020-09992-9 PubMed DOI PMC
Griffin B. R., Gist K. M., Faubel S. (2020). Current Status of Novel Biomarkers for the Diagnosis of Acute Kidney Injury: A Historical Perspective. J. Intensive Care Med. 35, 415–424. 10.1177/0885066618824531 PubMed DOI PMC
Hermann M., Flammer A., Lüscher T. F. (2006). Nitric Oxide in Hypertension. J. Clin. Hypertens. (Greenwich) 8, 17–29. 10.1111/j.1524-6175.2006.06032.x PubMed DOI PMC
Hye Khan M. A., Pavlov T. S., Christain S. V., Neckář J., Staruschenko A., Gauthier K. M., et al. (2014). Epoxyeicosatrienoic Acid Analogue Lowers Blood Pressure through Vasodilation and Sodium Channel Inhibition. Clin. Sci. (Lond) 127, 463–474. 10.1042/CS20130479 PubMed DOI PMC
Imig J. D., Elmarakby A., Nithipatikom K., Wei S., Capdevila J. H., Tuniki V. R., et al. (2010). Development of Epoxyeicosatrienoic Acid Analogs with In Vivo Anti-hypertensive Actions. Front. Physiol. 1, 157. 10.3389/fphys.2010.00157 PubMed DOI PMC
Imig J. D. (2019). Epoxyeicosanoids in Hypertension. Physiol. Res. 68, 695–704. 10.33549/physiolres.934291 PubMed DOI PMC
Imig J. D. (2015). Epoxyeicosatrienoic Acids, Hypertension, and Kidney Injury. Hypertension 65, 476–482. 10.1161/HYPERTENSIONAHA.114.03585 PubMed DOI PMC
Imig J. D. (2010). Targeting Epoxides for Organ Damage in Hypertension. J. Cardiovasc. Pharmacol. 56, 329–335. 10.1097/FJC.0b013e3181e96e0c PubMed DOI PMC
Jiang J. G., Chen R. J., Xiao B., Yang S., Wang J. N., Wang Y., et al. (2007). Regulation of Endothelial Nitric-Oxide Synthase Activity through Phosphorylation in Response to Epoxyeicosatrienoic Acids. Prostaglandins Other Lipid Mediat 82, 162–174. 10.1016/j.prostaglandins.2006.08.005 PubMed DOI
Jíchová Š., Doleželová Š., Kopkan L., Kompanowska-Jezierska E., Sadowski J., Červenka L. (2016a). Fenofibrate Attenuates Malignant Hypertension by Suppression of the Renin-Angiotensin System: A Study in Cyp1a1-Ren-2 Transgenic Rats. Am. J. Med. Sci. 352, 618–630. 10.1016/j.amjms.2016.09.008 PubMed DOI
Jíchová Š., Kopkan L., Husková Z., Doleželová Š., Neckář J., Kujal P., et al. (2016b). Epoxyeicosatrienoic Acid Analog Attenuates the Development of Malignant Hypertension, but Does Not Reverse it once Established. J. Hypertens. 34, 2008–2025. 10.1097/HJH.0000000000001029 PubMed DOI PMC
Khan A. H., Falck J. R., Manthati V. L., Campbell W. B., Imig J. D. (2014). Epoxyeicosatrienoic Acid Analog Attenuates Angiotensin II Hypertension and Kidney Injury. Front. Pharmacol. 5, 216. 10.3389/fphar.2014.00216 PubMed DOI PMC
Khan M. A., Liu J., Kumar G., Skapek S. X., Falck J. R., Imig J. D. (2013). Novel Orally Active Epoxyeicosatrienoic Acid (EET) Analogs Attenuate Cisplatin Nephrotoxicity. FASEB J. 27, 2946–2956. 10.1096/fj.12-218040 PubMed DOI PMC
Klahr S. (2001). The Role of Nitric Oxide in Hypertension and Renal Disease Progression. Nephrol. Dial. Transpl. 16, 60–62. 10.1093/ndt/16.suppl_1.60 PubMed DOI
Lima V. V., Zemse S. M., Chiao C. W., Bomfim G. F., Tostes R. C., Clinton Webb R., et al. (2016). Interleukin-10 Limits Increased Blood Pressure and Vascular RhoA/Rho-Kinase Signaling in Angiotensin II-Infused Mice. Life Sci. 145, 137–143. 10.1016/j.lfs.2015.12.009 PubMed DOI
Lin H. Y., Lee Y. T., Chan Y. W., Tse G. (2016). Animal Models for the Study of Primary and Secondary Hypertension in Humans. Biomed. Rep. 5, 653–659. 10.3892/br.2016.784 PubMed DOI PMC
Michel-Chávez A., Estañol B., Gien-López J. A., Robles-Cabrera A., Huitrado-Duarte M. E., Moreno-Morales R., et al. (2015). Heart Rate and Systolic Blood Pressure Variability on Recently Diagnosed Diabetics. Arq. Bras. Cardiol. 105, 276–284. 10.5935/abc.20150073 PubMed DOI PMC
Mohammed-Ali Z., Carlisle R. E., Nademi S., Dickhout J. G. (2017). Animal Models for the Study of Human Disease. Academic Press An Imprint of Elsevier. Second Edition, 379–417. 10.1016/B978-0-12-809468-6.00016-4 DOI
Neckář J., Kopkan L., Husková Z., Kolář F., Papoušek F., Kramer H. J., et al. (2012). Inhibition of Soluble Epoxide Hydrolase by Cis-4-[4-(3-Adamantan-1-Ylureido)cyclohexyl-Oxy]benzoic Acid Exhibits Antihypertensive and Cardioprotective Actions in Transgenic Rats with Angiotensin II-dependent Hypertension. Clin. Sci. 122, 513–527. 10.1042/CS20110622 PubMed DOI PMC
Neutel J. M., Smith D. H. (1999). Hypertension Control: Multifactorial Contributions. Am. J. Hypertens. 12, 164S–169S. 10.1016/s0895-7061(99)00221-6 PubMed DOI
Nowicki S., Chen S. L., Aizman O., Cheng X. J., Li D., Nowicki C., et al. (1997). 20-Hydroxyeicosa-tetraenoic Acid (20 HETE) Activates Protein Kinase C. Role in Regulation of Rat Renal Na+,K+-ATPase. J. Clin. Invest. 99, 1224–1230. 10.1172/JCI119279 PubMed DOI PMC
Oparil S., Acelajado M. C., Bakris G. L., Berlowitz D. R., Cífková R., Dominiczak A. F., et al. (2018). Hypertension. Nat. Rev. Dis. Primers 4, 18014–18048. 10.1038/nrdp.2018.14 PubMed DOI PMC
Rajendra Acharya U., Paul Joseph K., Kannathal N., Lim C. M., Suri J. S. (2006). Heart Rate Variability: a Review. Med. Biol. Eng. Comput. 44, 1031–1051. 10.1007/s11517-006-0119-0 PubMed DOI
Robinson E. S., Khankin E. V., Karumanchi S. A., Humphreys B. D. (2010). Hypertension Induced by Vascular Endothelial Growth Factor Signaling Pathway Inhibition: Mechanisms and Potential Use as a Biomarker. Semin. Nephrol. 30, 591–601. 10.1016/j.semnephrol.2010.09.007 PubMed DOI PMC
Rocic P., Schwartzman M. L. (2018). 20-HETE in the Regulation of Vascular and Cardiac Function. Pharmacol. Ther. 192, 74–87. 10.1016/j.pharmthera.2018.07.004 PubMed DOI PMC
Sacha J. (2014a). Interaction between Heart Rate and Heart Rate Variability. Ann. Noninvasive Electrocardiol. 19, 207–216. 10.1111/anec.12148 PubMed DOI PMC
Sacha J. (2014b). Interplay between Heart Rate and its Variability: A Prognostic Game. Front. Physiol. 5, 347. 10.3389/fphys.2014.00347 PubMed DOI PMC
Sacha J., Pluta W. (2005). Different Methods of Heart Rate Variability Analysis Reveal Different Correlations of Heart Rate Variability Spectrum with Average Heart Rate. J. Electrocardiol. 38, 47–53. 10.1016/j.jelectrocard.2004.09.015 PubMed DOI
Schrijvers B. F., Flyvbjerg A., De Vriese A. S. (2004). The Role of Vascular Endothelial Growth Factor (VEGF) in Renal Pathophysiology. Kidney Int. 65, 2003–2017. 10.1111/j.1523-1755.2004.00621.x PubMed DOI
Sedláková L., Kikerlová S., Husková Z., Červenková L., Chábová V. Č., Zicha J., et al. (2018). 20-Hydroxyeicosatetraenoic Acid Antagonist Attenuates the Development of Malignant Hypertension and Reverses it once Established: a Study in Cyp1a1-Ren-2 Transgenic Rats. Biosci. Rep. 38, BSR20171496. 10.1042/bsr20171496 PubMed DOI PMC
Sellers K. W., Sun C., Diez-Freire C., Waki H., Morisseau C., Falck J. R., et al. (2005). Novel Mechanism of Brain Soluble Epoxide Hydrolase-Mediated Blood Pressure Regulation in the Spontaneously Hypertensive Rat. FASEB J. 19, 626–628. 10.1096/fj.04-3128fje PubMed DOI
Shaffer F., McCraty R., Zerr C. L. (2014). A Healthy Heart Is Not a Metronome: an Integrative Review of the Heart's Anatomy and Heart Rate Variability. Front. Psychol. 5, 1040. 10.3389/fpsyg.2014.01040 PubMed DOI PMC
Shiono K., Sokabe H. (1976). Renin-angiotensin System in Spontaneously Hypertensive Rats. Am. J. Physiol. 231, 1295–1299. 10.1152/ajplegacy.1976.231.4.1295 PubMed DOI
Stanaway J. D., Afshin A., Gakidou E., Lim S. S., Abate D., Abate K. H., et al. (2018). Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990-2017: a Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 392, 1923–1994. 10.1016/S0140-6736(18)32225-6 PubMed DOI PMC
Tanase D. M., Gosav E. M., Radu S., Ouatu A., Rezus C., Ciocoiu M., et al. (2019). Arterial Hypertension and Interleukins: Potential Therapeutic Target or Future Diagnostic Marker? Int. J. Hypertens. 2019, 3159283–3159317. 10.1155/2019/3159283 PubMed DOI PMC
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17, 354–381. 10.1161/01.cir.93.5.1043 PubMed DOI
Thireau J., Zhang B. L., Poisson D., Babuty D. (2008). Heart Rate Variability in Mice: A Theoretical and Practical Guide. Exp. Physiol. 93, 83–94. 10.1113/expphysiol.2007.040733 PubMed DOI
Thomas B. L., Claassen N., Becker P., Viljoen M. (2019). Validity of Commonly Used Heart Rate Variability Markers of Autonomic Nervous System Function. Neuropsychobiology 78, 14–26. 10.1159/000495519 PubMed DOI
Tinsley J. H., South S., Chiasson V. L., Mitchell B. M. (2010). Interleukin-10 Reduces Inflammation, Endothelial Dysfunction, and Blood Pressure in Hypertensive Pregnant Rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R713–R719. 10.1152/ajpregu.00712.2009 PubMed DOI
Tsikas D. (2005). Methods of Quantitative Analysis of the Nitric Oxide Metabolites Nitrite and Nitrate in Human Biological Fluids. Free Radic. Res. 39, 797–815. 10.1080/10715760500053651 PubMed DOI
Ueno M., Sakamoto H., Tomimoto H., Akiguchi I., Onodera M., Huang C. L., et al. (2004). Blood-brain Barrier Is Impaired in the hippocampus of Young Adult Spontaneously Hypertensive Rats. Acta Neuropathol. 107, 532–538. 10.1007/s00401-004-0845-z PubMed DOI
Unger T., Borghi C., Charchar F., Khan N. A., Poulter N. R., Prabhakaran D., et al. (2020). 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 75, 1334–1357. 10.1161/HYPERTENSIONAHA.120.15026 PubMed DOI
Vega-Martínez G., Toledo-Peral C., Alvarado-Serrano C., Leija-Salas L., Aztati-Aguilar O. G., De Vizcaya-Ruiz A. (2014). “SDNN index of Heart Rate Variability as an Indicator of Change in Rats Exposed to fine Particles: Study of the Impact of Air Pollution in Mexico City,” in 2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE, Ciudad del Carmen, Mexico, 29 Sept.-3 Oct. 2014. 10.1109/ICEEE.2014.6978319 DOI
Virtanen R., Jula A., Kuusela T., Helenius H., Voipio-Pulkki L. M. (2003). Reduced Heart Rate Variability in Hypertension: Associations with Lifestyle Factors and Plasma Renin Activity. J. Hum. Hypertens. 17, 171–179. 10.1038/sj.jhh.1001529 PubMed DOI
Walkowska A., Červenka L., Imig J. D., Falck J. R., Sadowski J., Kompanowska-Jezierska E. (2021). Early Renal Vasodilator and Hypotensive Action of Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Receptor Blocker (AAA) in Spontaneously Hypertensive Rats. Front. Physiol. 12, 622882–622889. 10.3389/fphys.2021.622882 PubMed DOI PMC
Ward N. C., Rivera J., Hodgson J., Puddey I. B., Beilin L. J., Falck J. R., et al. (2004). Urinary 20-hydroxyeicosatetraenoic Acid Is Associated with Endothelial Dysfunction in Humans. Circulation 110, 438–443. 10.1161/01.CIR.0000136808.72912.D9 PubMed DOI
Wasserstrum Y., Kornowski R., Raanani P., Leader A., Pasvolsky O., Iakobishvili Z. (2015). Hypertension in Cancer Patients Treated with Anti-angiogenic Based Regimens. Cardiooncology 1, 6–10. 10.1186/s40959-015-0009-4 PubMed DOI PMC
World Health Organization (2013). A Global Brief on Hypertension: Silent Killer, Global Public Health Crisis: World Health Day 2013. 10.5005/ijopmr-24-1-2 DOI
Wu C. C., Gupta T., Garcia V., Ding Y., Schwartzman M. L. (2014). 20-HETE and Blood Pressure Regulation: Clinical Implications. Cardiol. Rev. 22, 1–12. 10.1097/CRD.0b013e3182961659 PubMed DOI PMC