The Role of Renal Vascular Reactivity in the Development of Renal Dysfunction in Compensated and Decompensated Congestive Heart Failure

. 2018 ; 43 (6) : 1730-1741. [epub] 20181123

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30472713

BACKGROUND/AIMS: Reduction of renal blood flow (RBF) is commonly thought to be a causative factor of renal dysfunction in congestive heart failure (CHF), but the exact mechanism of the renal hypoperfusion is not clear. Apart from the activation of neurohormonal systems controlling intrarenal vascular tone, the cause might be altered reactivity of the renal vasculature to endogenous vasoactive agents. METHODS: To evaluate the role of this mechanism, we assessed by an ultrasonic transient-time flow probe maximum RBF responses to renal artery infusion of angiotensin II (ANG II), norepinephrine (NE) and acetylcholine (Ach) in healthy male rats and animals with compensated and decompensated CHF. CHF was induced by volume overload achieved by the creation of the aorto-caval fistula (ACF) in Hannover Sprague-Dawley rats. RESULTS: Maximum responses in RBF to ANG II were similar in rats studied five weeks (compensated phase) and 20 weeks (decompensated phase) after ACF creation when compared to sham-operated rats. On the other hand, NE elicited larger maximum decreases in RBF in rats with CHF (five and 20 weeks post-ACF) than in sham-operated controls. We observed greater maximum vasodilatory responses to Ach only in rats with a compensated stage of CHF (five weeks post-ACF). CONCLUSION: Greater renal vasoconstrictor responsiveness to ANG II or reduced renal vasodilatation in response to Ach do not play a decisive role in the development of renal dysfunction in ACF rats with compensated and decompensated CHF. On the other hand, exaggerated renal vascular responsiveness to NE may be here a contributing causative factor, active in either CHF phase.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Characterization of a new model of chemotherapy-induced heart failure with reduced ejection fraction and nephrotic syndrome in Ren-2 transgenic rats

. 2024 Nov ; 47 (11) : 3126-3146. [epub] 20240909

Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula

. 2024 Apr ; 47 (4) : 998-1016. [epub] 20240202

The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula

. 2023 Dec ; 396 (12) : 3757-3773. [epub] 20230620

Impaired renal autoregulation and pressure-natriuresis: any role in the development of heart failure in normotensive and angiotensin II-dependent hypertensive rats?

. 2023 Oct ; 46 (10) : 2340-2355. [epub] 20230817

Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart

. 2023 Feb 09 ; 24 (4) : . [epub] 20230209

Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats

. 2021 Nov 30 ; 9 (12) : . [epub] 20211130

Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation

. 2021 Aug 20 ; 9 (8) : . [epub] 20210820

AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys from hypoperfusion during congestive heart failure in normotensive and hypertensive rats

. 2021 Feb 19 ; 11 (1) : 4271. [epub] 20210219

Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure

. 2019 ; 44 (4) : 792-809. [epub] 20190820

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace