Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2/0002/20, 2/0158/19
VEGA
21-0410
Slovak Research and Development Agency under the Contract no
PubMed
36834901
PubMed Central
PMC9967643
DOI
10.3390/ijms24043490
PII: ijms24043490
Knihovny.cz E-zdroje
- Klíčová slova
- angiotensin (1-7), aortocaval fistula, connexin 43, extracellular matrix, heart failure,
- MeSH
- angiotensin II MeSH
- fibróza MeSH
- hypertenze * metabolismus MeSH
- konexin 43 MeSH
- krysa rodu Rattus MeSH
- potkani transgenní MeSH
- srdce MeSH
- srdeční selhání * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin I (1-7) MeSH Prohlížeč
- angiotensin II MeSH
- konexin 43 MeSH
The extracellular matrix (ECM) is a highly dynamic structure controlling the proper functioning of heart muscle. ECM remodeling with enhanced collagen deposition due to hemodynamic overload impairs cardiomyocyte adhesion and electrical coupling that contributes to cardiac mechanical dysfunction and arrhythmias. We aimed to explore ECM and connexin-43 (Cx43) signaling pathways in hemodynamically overloaded rat heart as well as the possible implication of angiotensin (1-7) (Ang (1-7)) to prevent/attenuate adverse myocardial remodeling. Male 8-week-old, normotensive Hannover Spraque-Dawley rats (HSD), hypertensive (mRen-2)27 transgenic rats (TGR) and Ang (1-7) transgenic rats (TGR(A1-7)3292) underwent aortocaval fistula (ACF) to produce volume overload. Five weeks later, biometric and heart tissue analyses were performed. Cardiac hypertrophy in response to volume overload was significantly less pronounced in TGR(A1-7)3292 compared to HSD rats. Moreover, a marker of fibrosis hydroxyproline was increased in both ventricles of volume-overloaded TGR while it was reduced in the Ang (1-7) right heart ventricle. The protein level and activity of MMP-2 were reduced in both ventricles of volume-overloaded TGR/TGR(A1-7)3292 compared to HSD. SMAD2/3 protein levels were decreased in the right ventricle of TGR(A1-7)3292 compared to HSD/TGR in response to volume overload. In parallel, Cx43 and pCx43 implicated in electrical coupling were increased in TGR(A1-7)3292 versus HSD/TGR. It can be concluded that Ang (1-7) exhibits cardio-protective and anti-fibrotic potential in conditions of cardiac volume overload.
Zobrazit více v PubMed
Savarese G., Becher P.M., Lund L.H., Seferovic P., Rosano G.M.C., Coats A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2022;118:3270–3287. doi: 10.1093/cvr/cvac013. PubMed DOI
Herum K.M., Lunde I.G., Skrbic B., Louch W.E., Hasic A., Boye S., Unger A., Brorson S.H., Sjaastad I., Tønnessen T., et al. Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial stiffness in the pressure-overloaded heart. Cardiovasc. Res. 2015;106:217–226. doi: 10.1093/cvr/cvv002. PubMed DOI
Martins-Marques T., Catarino S., Marques C., Matafome P., Ribeiro-Rodrigues T., Baptista R., Pereira P., Girão H. Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie. 2015;112:196–201. doi: 10.1016/j.biochi.2015.02.020. PubMed DOI
Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol. Open. 2021;10:bio.058777. doi: 10.1242/bio.058777. PubMed DOI PMC
Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC
Medugorac I., Jacob R. Characterisation of left ventricular collagen in the rat. Cardiovasc. Res. 1983;17:15–21. doi: 10.1093/cvr/17.1.15. PubMed DOI
Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI
Sanes S.F. The extracellular matrix: Not Just Pretty Fibrils. Science. 2009;326:1216–1219. PubMed PMC
Severs N.J., Dupont E., Coppen S.R., Halliday D., Inett E., Baylis D., Rothery S. Remodelling of gap junctions and connexin expression in heart disease. Biochim. Biophys. Acta—Biomembr. 2004;1662:138–148. doi: 10.1016/j.bbamem.2003.10.019. PubMed DOI
Lambiase P.D., Tinker A. Connexins in the heart. Cell Tissue Res. 2015;360:675–684. doi: 10.1007/s00441-014-2020-8. PubMed DOI
Stroemlund L.W., Jensen C.F., Qvortrup K., Delmar M., Nielsen M.S. Gap junctions—Guards of excitability. Biochem. Soc. Trans. 2015;43:508–512. doi: 10.1042/BST20150059. PubMed DOI
Tribulová N., Knezl V., Okruhlicová L., Slezák J. Myocardial gap junctions: Targets for novel approaches in the prevention of life-threatening cardiac arrhythmias. Physiol. Res. 2008;57:S1–S13. doi: 10.33549/physiolres.931546. PubMed DOI
Vitiello A., La Porta R., Trama U., Troiano V., Ferrara F. Pleiotropic effects of AT-1 receptor antagonists in hypoxia induced by cardiac ischaemia. Inflammopharmacology. 2022;30:1407–1410. doi: 10.1007/s10787-022-00962-8. PubMed DOI
Grobe J.L., Mecca A.P., Lingis M., Shenoy V., Bolton T.A., Machado J.M., Speth R.C., Raizada M.K., Katovich M.J. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7) Am. J. Physiol.—Heart Circ. Physiol. 2007;292:H736–H742. doi: 10.1152/ajpheart.00937.2006. PubMed DOI
Shah A., Oh Y.-B., Lee S.H., Lim J.M., Kim S.H. Angiotensin-(1-7) attenuates hypertension in exercise-trained renal hypertensive rats. Am. J. Physiol.—Heart Circ. Physiol. 2012;302:H2372–H2380. doi: 10.1152/ajpheart.00846.2011. PubMed DOI
Oudit G.Y., Kassiri Z., Patel M.P., Chappell M., Butany J., Backx P.H., Tsushima R.G., Scholey J.W., Khokha R., Penninger J.M. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc. Res. 2007;75:29–39. doi: 10.1016/j.cardiores.2007.04.007. PubMed DOI
Kassiri Z., Zhong J., Guo D., Basu R., Wang X., Liu P.P., Scholey J.W., Penninger J.M., Oudit G.Y. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ. Heart Fail. 2009;2:446–455. doi: 10.1161/CIRCHEARTFAILURE.108.840124. PubMed DOI
Yamamoto K., Ohishi M., Katsuya T., Ito N., Ikushima M., Kaibe M., Tatara Y., Shiota A., Sugano S., Takeda S., et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension. 2006;47:718–726. doi: 10.1161/01.HYP.0000205833.89478.5b. PubMed DOI
Hu K., Guo Y., Li Y., Lu C., Cai C., Zhou S., Ke Z., Li Y., Wang W. Oxidative stress: An essential factor in the process of arteriovenous fistula failure. Front. Cardiovasc. Med. 2022;9:984472. doi: 10.3389/fcvm.2022.984472. PubMed DOI PMC
Uray K.S., Peng Z., Cattano D., Eltzschig H.K., Doursout M.F. Development of pulmonary fibrosis after heart failure induced by elevated left atrial pressure. Am. J. Transl. Res. 2020;12:4639–4647. PubMed PMC
Wu J., Cheng Z., Gu Y., Zou W., Zhang M., Zhu P., Hu S. Aggravated cardiac remodeling post aortocaval fistula in unilateral nephrectomized rats. PLoS ONE. 2015;10:e0134579. doi: 10.1371/journal.pone.0134579. PubMed DOI PMC
Hanna A., Humeres C., Frangogiannis N.G. The role of Smad signaling cascades in cardiac fibrosis. Cell. Signal. 2021;77:109826. doi: 10.1016/j.cellsig.2020.109826. PubMed DOI PMC
Singh R.M., Cummings E., Pantos C., Singh J. Protein kinase C and cardiac dysfunction: A review. Heart Fail. Rev. 2017;22:843–859. doi: 10.1007/s10741-017-9634-3. PubMed DOI PMC
Palatinus J.A., Rhett J.M., Gourdie R.G. Enhanced PKCε mediated phosphorylation of connexin43 at serine 368 by a carboxyl-terminal mimetic peptide is dependent on injury. Channels. 2011;5:236–246. doi: 10.4161/chan.5.3.15834. PubMed DOI PMC
Karram T., Abbasi A., Keidar S., Golomb E., Hochberg I., Winaver J., Hoffman A., Abassi Z. Effects of spironolactone and eprosartan on cardiac remodeling and angiotensin-converting enzyme isoforms in rats with experimental heart failure. Am. J. Physiol.—Heart Circ. Physiol. 2005;289:H1351–H1358. doi: 10.1152/ajpheart.01186.2004. PubMed DOI
Melenovsky V., Skaroupkova P., Benes J., Torresova V., Kopkan L., Cervenka L. The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press. Res. 2012;35:167–173. doi: 10.1159/000331562. PubMed DOI
Vacková Š., Kikerlová S., Melenovsky V., Kolář F., Imig J.D., Kompanowska-Jezierska E., Sadowski J., Červenka L. Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure. Kidney Blood Press. Res. 2019;44:792–809. doi: 10.1159/000501688. PubMed DOI PMC
Gomes E.R.M., Lara A.A., Almeida P.W.M., Guimarães D., Resende R.R., Campagnole-Santos M.J., Bader M., Santos R.A.S., Guatimosim S. Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3′,5′-cyclic monophosphate-dependent pathway. Hypertension. 2010;55:153–160. doi: 10.1161/HYPERTENSIONAHA.109.143255. PubMed DOI
Abassi Z., Goltsman I., Karram T., Winaver J., Hoffman A. Aortocaval fistula in rat: A unique model of volume-overload congestive heart failure and cardiac hypertrophy. J. Biomed. Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC
Melenovsky V., Benes J., Skaroupkova P., Sedmera D., Strnad H., Kolar M., Vlcek C., Petrak J., Benes J., Papousek F., et al. Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol. Cell. Biochem. 2011;354:83–96. doi: 10.1007/s11010-011-0808-3. PubMed DOI
Papinska A.M., Mordwinkin N.M., Meeks C.J., Jadhav S.S., Rodgers K.E. Angiotensin-(1-7) administration benefits cardiac, renal and progenitor cell function in db/db mice. Br. J. Pharmacol. 2015;172:4443–4453. doi: 10.1111/bph.13225. PubMed DOI PMC
Chen Y., Zhao W., Liu C., Meng W., Zhao T., Bhattacharya S.K., Sun Y. Molecular and cellular effect of angiotensin 1-7 on hypertensive kidney disease. Am. J. Hypertens. 2019;32:460–467. doi: 10.1093/ajh/hpz009. PubMed DOI PMC
Marcus Y., Shefer G., Sasson K., Kohen F., Limor R., Pappo O., Nevo N., Biton I., Bach M., Berkutzki T., et al. Angiotensin 1-7 as means to prevent the metabolic syndrome lessons from the fructose-fed rat model. Diabetes. 2013;62:1121–1130. doi: 10.2337/db12-0792. PubMed DOI PMC
El Hajj E.C., El Hajj M.C., Ninh V.K., Gardner J.D. Featured Article: Cardioprotective effects of lysyl oxidase inhibition against volume overload-induced extracellular matrix remodeling. Exp. Biol. Med. 2016;241:539–549. doi: 10.1177/1535370215616511. PubMed DOI PMC
Shaqura M., Mohamed D.M., Aboryag N.B., Bedewi L., Dehe L., Treskatsch S., Shakibaei M., Schäfer M., Mousa S.A. Pathological alterations in liver injury following congestive heart failure induced by volume overload in rats. PLoS ONE. 2017;12:e0184161. doi: 10.1371/journal.pone.0184161. PubMed DOI PMC
Fu L., Wei C.C., Powell P.C., Bradley W.E., Collawn J.F., Dell’Italia L.J. Volume overload induces autophagic degradation of procollagen in cardiac fibroblasts. J. Mol. Cell. Cardiol. 2015;89:241–250. doi: 10.1016/j.yjmcc.2015.10.027. PubMed DOI PMC
Guido M.C., De Carvalho Frimm C., Koike M.K., Cordeiro F.F., Moretti A.I.S., Godoy L.C. Low coronary driving pressure is associated with subendocardial remodelling and left ventricular dysfunction in aortocaval fistula. Clin. Exp. Pharmacol. Physiol. 2007;34:1165–1172. doi: 10.1111/j.1440-1681.2007.04689.x. PubMed DOI
Li H., Simon H., Bocan T.M.A., Peterson J.T. MMP/TIMP expression in spontaneously hypertensive heart failure rats: The effect of ACE- and MMP-inhibition. Cardiovasc. Res. 2000;46:298–306. doi: 10.1016/S0008-6363(00)00028-6. PubMed DOI
Tang B., Kang P., Zhu L., Xuan L., Wang H., Zhang H., Wang X., Xu J. Simvastatin protects heart function and myocardial energy metabolism in pulmonary arterial hypertension induced right heart failure. J. Bioenerg. Biomembr. 2021;53:1–12. doi: 10.1007/s10863-020-09867-z. PubMed DOI
Mohammadi K., Rouet-Benzineb P., Laplace M., Crozatier B. Protein kinase C activity and expression in rabbit left ventricular hypertrophy. J. Mol. Cell. Cardiol. 1997;29:1687–1694. doi: 10.1006/jmcc.1997.0411. PubMed DOI
Fryer L.G.D., Holness M.J., Decock J.B.J., Sugden M.C. Cardiac protein kinase C expression in two models of cardiac hypertrophy associated with an activated cardiac renin-angiotensin system: Effects of experimental hyperthyroidism and genetic hypertension (the mRen-2 rat) J. Endocrinol. 1998;158:27–33. doi: 10.1677/joe.0.1580027. PubMed DOI
Dorn G.W., Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Investig. 2005;115:527–537. doi: 10.1172/jci200524178. PubMed DOI PMC
Chatterjee E., Chaudhuri R.D., Sarkar S. Cardiomyocyte targeted overexpression of IGF1 during detraining restores compromised cardiac condition via mTORC2 mediated switching of PKCδ to PKCα. Biochim. Biophys. Acta—Mol. Basis Dis. 2019;1865:2736–2752. doi: 10.1016/j.bbadis.2019.07.003. PubMed DOI
Duquesnes N., Lezoualc’h F., Crozatier B. PKC-delta and PKC-epsilon: Foes of the same family or strangers? J. Mol. Cell. Cardiol. 2011;51:665–673. doi: 10.1016/j.yjmcc.2011.07.013. PubMed DOI
Tribulova N., Bacova B.S., Benova T.E., Knezl V., Barancik M., Slezak J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients. 2017;9:1191. doi: 10.3390/nu9111191. PubMed DOI PMC
Bačová B.S., Vinczenzová C., Žurmanová J., Kašparová D., Knezl V., Beňová T.E., Pavelka S., Soukup T., Tribulová N. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochem. Cell Biol. 2017;147:63–73. doi: 10.1007/s00418-016-1488-6. PubMed DOI
Guggilam A., Hutchinson K.R., West T.A., Kelly A.P., Galantowicz M.L., Davidoff A.J., Sadayappan S., Lucchesi P.A. In vivo and in vitro cardiac responses to beta-adrenergic stimulation in volume-overload heart failure. J. Mol. Cell. Cardiol. 2013;57:47–58. doi: 10.1016/j.yjmcc.2012.11.013. PubMed DOI PMC
Cao L., Chen Y., Lu L., Liu Y., Wang Y., Fan J., Yin Y. Angiotensin II upregulates fibroblast-myofibroblast transition through Cx43-dependent CaMKII and TGF-β1 signaling in neonatal rat cardiac fibroblasts. Acta Biochim. Biophys. Sin. 2018;50:843–852. doi: 10.1093/abbs/gmy090. PubMed DOI
Lampe P.D., Lau A.F. The effects of connexin phosphorylation on gap junctional communication. Int. J. Biochem. Cell Biol. 2004;36:1171–1186. doi: 10.1016/S1357-2725(03)00264-4. PubMed DOI PMC
Bacova B.S., Radosinska J., Wallukat G., Barancik M., Wallukat A., Knezl V., Sykora M., Paulis L., Tribulova N. Suppression of β1-adrenoceptor autoantibodies is involved in the antiarrhythmic effects of omega-3 fatty acids in male and female hypertensive rats. Int. J. Mol. Sci. 2020;21:526. doi: 10.3390/ijms21020526. PubMed DOI PMC
Szeiffová Bačova B., Egan Beňová T., Viczenczová C., Soukup T., Raučhová H., Pavelka S., Knezl V., Barancík M., Tribulová N. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol. Res. 2016;65:S77–S90. PubMed
Lin H., Mitasikova M., Dlugosova K., Okruhlicova L., Imanaga I., Ogawa K., Weismann P., Tribulova N. Thyroid hormones suppress ε-PKC signalling, down-regulate connexin-43 and increase lethal arrhythmia susceptibility in non-diabetic and diabetic rat hearts. J. Physiol. Pharmacol. 2008;59:271–285. PubMed
Cone A.C., Cavin G., Ambrosi C., Hakozaki H., Wu-Zhang A.X., Kunkel M.T., Newton A.C., Sosinsky G.E. Protein Kinase Cδ-mediated Phosphorylation of Connexin43 Gap Junction Channels Causes Movement within Gap Junctions followed by Vesicle Internalization and Protein Degradation. J. Biol. Chem. 2014;289:8781–8798. doi: 10.1074/jbc.M113.533265. PubMed DOI PMC
Pun R., North M.H.K. and B.J. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front. Cardiovasc. Med. 2023;9:1080131. doi: 10.3389/fcvm.2022.1080131. PubMed DOI PMC
Santos R.A.S., Ferreira A.J., Nadu A.P., Braga A.N.G., De Almeida A.P., Campagnole-Santos M.J., Baltatu O., Iliescu R., Reudelhuber T.L., Bader M. Expression of an angiotensin-(1-7)-producing fusion protein produces cardioprotective effects in rats. Physiol. Genomics. 2004;17:292–299. doi: 10.1152/physiolgenomics.00227.2003. PubMed DOI
Mullins J.J., Peters J., Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–544. PubMed
Rong P., Campbell D.J., Skinner S.L. Hypertension in the (mRen-2)27 rat is not explained by enhanced kinetics of transgenic Ren-2 renin. Hypertension. 2003;42:523–527. doi: 10.1161/01.HYP.0000093383.18302.A7. PubMed DOI
Kratky V., Kopkan L., Kikerlova S., Huskova Z., Taborsky M., Sadowski J., Kolar F., Cervenka L. The role of renal vascular reactivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press. Res. 2018;43:1730–1741. doi: 10.1159/000495391. PubMed DOI
Bacova B.S., Viczenczova C., Andelova K., Sykora M., Chaudagar K., Barancik M., Adamcova M., Knezl V., Benova T.E., Weismann P., et al. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants. 2020;9:546. doi: 10.3390/antiox9060546. PubMed DOI PMC
Barancik M., Bohacova V., Gibalova L., Sedlak J., Sulova Z., Breier A. Potentiation of anticancer drugs: Effects of pentoxifylline on neoplastic cells. Int. J. Mol. Sci. 2012;13:369–382. doi: 10.3390/ijms13010369. PubMed DOI PMC
Benova T., Viczenczova C., Radosinska J., Bacova B., Knezl V., Dosenko V., Weismann P., Zeman M., Navarova J., Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethalarrhythmias. Can. J. Physiol. Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI
Andelova K., Szeiffova Bacova B., Sykora M., Pavelka S., Rauchova H., Tribulova N. Cardiac Cx43 Signaling Is Enhanced and TGF-β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM. Biomedicines. 2022;10:1707. doi: 10.3390/biomedicines10071707. PubMed DOI PMC
Szobi A., Farkašová-Ledvényiová V., Lichý M., Muráriková M., Čarnická S., Ravingerová T., Adameová A. Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J. Cell. Mol. Med. 2018;22:4183–4196. doi: 10.1111/jcmm.13697. PubMed DOI PMC
Shlafer M., Shepard B.M. A method to reduce interference by sucrose in the detection of thiobarbituric acid-reactive substances. Anal. Biochem. 1984;137:269–276. doi: 10.1016/0003-2697(84)90084-8. PubMed DOI