Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart

. 2023 Feb 09 ; 24 (4) : . [epub] 20230209

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36834901

Grantová podpora
2/0002/20, 2/0158/19 VEGA
21-0410 Slovak Research and Development Agency under the Contract no

The extracellular matrix (ECM) is a highly dynamic structure controlling the proper functioning of heart muscle. ECM remodeling with enhanced collagen deposition due to hemodynamic overload impairs cardiomyocyte adhesion and electrical coupling that contributes to cardiac mechanical dysfunction and arrhythmias. We aimed to explore ECM and connexin-43 (Cx43) signaling pathways in hemodynamically overloaded rat heart as well as the possible implication of angiotensin (1-7) (Ang (1-7)) to prevent/attenuate adverse myocardial remodeling. Male 8-week-old, normotensive Hannover Spraque-Dawley rats (HSD), hypertensive (mRen-2)27 transgenic rats (TGR) and Ang (1-7) transgenic rats (TGR(A1-7)3292) underwent aortocaval fistula (ACF) to produce volume overload. Five weeks later, biometric and heart tissue analyses were performed. Cardiac hypertrophy in response to volume overload was significantly less pronounced in TGR(A1-7)3292 compared to HSD rats. Moreover, a marker of fibrosis hydroxyproline was increased in both ventricles of volume-overloaded TGR while it was reduced in the Ang (1-7) right heart ventricle. The protein level and activity of MMP-2 were reduced in both ventricles of volume-overloaded TGR/TGR(A1-7)3292 compared to HSD. SMAD2/3 protein levels were decreased in the right ventricle of TGR(A1-7)3292 compared to HSD/TGR in response to volume overload. In parallel, Cx43 and pCx43 implicated in electrical coupling were increased in TGR(A1-7)3292 versus HSD/TGR. It can be concluded that Ang (1-7) exhibits cardio-protective and anti-fibrotic potential in conditions of cardiac volume overload.

Zobrazit více v PubMed

Savarese G., Becher P.M., Lund L.H., Seferovic P., Rosano G.M.C., Coats A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2022;118:3270–3287. doi: 10.1093/cvr/cvac013. PubMed DOI

Herum K.M., Lunde I.G., Skrbic B., Louch W.E., Hasic A., Boye S., Unger A., Brorson S.H., Sjaastad I., Tønnessen T., et al. Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial stiffness in the pressure-overloaded heart. Cardiovasc. Res. 2015;106:217–226. doi: 10.1093/cvr/cvv002. PubMed DOI

Martins-Marques T., Catarino S., Marques C., Matafome P., Ribeiro-Rodrigues T., Baptista R., Pereira P., Girão H. Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie. 2015;112:196–201. doi: 10.1016/j.biochi.2015.02.020. PubMed DOI

Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol. Open. 2021;10:bio.058777. doi: 10.1242/bio.058777. PubMed DOI PMC

Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC

Medugorac I., Jacob R. Characterisation of left ventricular collagen in the rat. Cardiovasc. Res. 1983;17:15–21. doi: 10.1093/cvr/17.1.15. PubMed DOI

Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI

Sanes S.F. The extracellular matrix: Not Just Pretty Fibrils. Science. 2009;326:1216–1219. PubMed PMC

Severs N.J., Dupont E., Coppen S.R., Halliday D., Inett E., Baylis D., Rothery S. Remodelling of gap junctions and connexin expression in heart disease. Biochim. Biophys. Acta—Biomembr. 2004;1662:138–148. doi: 10.1016/j.bbamem.2003.10.019. PubMed DOI

Lambiase P.D., Tinker A. Connexins in the heart. Cell Tissue Res. 2015;360:675–684. doi: 10.1007/s00441-014-2020-8. PubMed DOI

Stroemlund L.W., Jensen C.F., Qvortrup K., Delmar M., Nielsen M.S. Gap junctions—Guards of excitability. Biochem. Soc. Trans. 2015;43:508–512. doi: 10.1042/BST20150059. PubMed DOI

Tribulová N., Knezl V., Okruhlicová L., Slezák J. Myocardial gap junctions: Targets for novel approaches in the prevention of life-threatening cardiac arrhythmias. Physiol. Res. 2008;57:S1–S13. doi: 10.33549/physiolres.931546. PubMed DOI

Vitiello A., La Porta R., Trama U., Troiano V., Ferrara F. Pleiotropic effects of AT-1 receptor antagonists in hypoxia induced by cardiac ischaemia. Inflammopharmacology. 2022;30:1407–1410. doi: 10.1007/s10787-022-00962-8. PubMed DOI

Grobe J.L., Mecca A.P., Lingis M., Shenoy V., Bolton T.A., Machado J.M., Speth R.C., Raizada M.K., Katovich M.J. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7) Am. J. Physiol.—Heart Circ. Physiol. 2007;292:H736–H742. doi: 10.1152/ajpheart.00937.2006. PubMed DOI

Shah A., Oh Y.-B., Lee S.H., Lim J.M., Kim S.H. Angiotensin-(1-7) attenuates hypertension in exercise-trained renal hypertensive rats. Am. J. Physiol.—Heart Circ. Physiol. 2012;302:H2372–H2380. doi: 10.1152/ajpheart.00846.2011. PubMed DOI

Oudit G.Y., Kassiri Z., Patel M.P., Chappell M., Butany J., Backx P.H., Tsushima R.G., Scholey J.W., Khokha R., Penninger J.M. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc. Res. 2007;75:29–39. doi: 10.1016/j.cardiores.2007.04.007. PubMed DOI

Kassiri Z., Zhong J., Guo D., Basu R., Wang X., Liu P.P., Scholey J.W., Penninger J.M., Oudit G.Y. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ. Heart Fail. 2009;2:446–455. doi: 10.1161/CIRCHEARTFAILURE.108.840124. PubMed DOI

Yamamoto K., Ohishi M., Katsuya T., Ito N., Ikushima M., Kaibe M., Tatara Y., Shiota A., Sugano S., Takeda S., et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension. 2006;47:718–726. doi: 10.1161/01.HYP.0000205833.89478.5b. PubMed DOI

Hu K., Guo Y., Li Y., Lu C., Cai C., Zhou S., Ke Z., Li Y., Wang W. Oxidative stress: An essential factor in the process of arteriovenous fistula failure. Front. Cardiovasc. Med. 2022;9:984472. doi: 10.3389/fcvm.2022.984472. PubMed DOI PMC

Uray K.S., Peng Z., Cattano D., Eltzschig H.K., Doursout M.F. Development of pulmonary fibrosis after heart failure induced by elevated left atrial pressure. Am. J. Transl. Res. 2020;12:4639–4647. PubMed PMC

Wu J., Cheng Z., Gu Y., Zou W., Zhang M., Zhu P., Hu S. Aggravated cardiac remodeling post aortocaval fistula in unilateral nephrectomized rats. PLoS ONE. 2015;10:e0134579. doi: 10.1371/journal.pone.0134579. PubMed DOI PMC

Hanna A., Humeres C., Frangogiannis N.G. The role of Smad signaling cascades in cardiac fibrosis. Cell. Signal. 2021;77:109826. doi: 10.1016/j.cellsig.2020.109826. PubMed DOI PMC

Singh R.M., Cummings E., Pantos C., Singh J. Protein kinase C and cardiac dysfunction: A review. Heart Fail. Rev. 2017;22:843–859. doi: 10.1007/s10741-017-9634-3. PubMed DOI PMC

Palatinus J.A., Rhett J.M., Gourdie R.G. Enhanced PKCε mediated phosphorylation of connexin43 at serine 368 by a carboxyl-terminal mimetic peptide is dependent on injury. Channels. 2011;5:236–246. doi: 10.4161/chan.5.3.15834. PubMed DOI PMC

Karram T., Abbasi A., Keidar S., Golomb E., Hochberg I., Winaver J., Hoffman A., Abassi Z. Effects of spironolactone and eprosartan on cardiac remodeling and angiotensin-converting enzyme isoforms in rats with experimental heart failure. Am. J. Physiol.—Heart Circ. Physiol. 2005;289:H1351–H1358. doi: 10.1152/ajpheart.01186.2004. PubMed DOI

Melenovsky V., Skaroupkova P., Benes J., Torresova V., Kopkan L., Cervenka L. The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press. Res. 2012;35:167–173. doi: 10.1159/000331562. PubMed DOI

Vacková Š., Kikerlová S., Melenovsky V., Kolář F., Imig J.D., Kompanowska-Jezierska E., Sadowski J., Červenka L. Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure. Kidney Blood Press. Res. 2019;44:792–809. doi: 10.1159/000501688. PubMed DOI PMC

Gomes E.R.M., Lara A.A., Almeida P.W.M., Guimarães D., Resende R.R., Campagnole-Santos M.J., Bader M., Santos R.A.S., Guatimosim S. Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3′,5′-cyclic monophosphate-dependent pathway. Hypertension. 2010;55:153–160. doi: 10.1161/HYPERTENSIONAHA.109.143255. PubMed DOI

Abassi Z., Goltsman I., Karram T., Winaver J., Hoffman A. Aortocaval fistula in rat: A unique model of volume-overload congestive heart failure and cardiac hypertrophy. J. Biomed. Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC

Melenovsky V., Benes J., Skaroupkova P., Sedmera D., Strnad H., Kolar M., Vlcek C., Petrak J., Benes J., Papousek F., et al. Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol. Cell. Biochem. 2011;354:83–96. doi: 10.1007/s11010-011-0808-3. PubMed DOI

Papinska A.M., Mordwinkin N.M., Meeks C.J., Jadhav S.S., Rodgers K.E. Angiotensin-(1-7) administration benefits cardiac, renal and progenitor cell function in db/db mice. Br. J. Pharmacol. 2015;172:4443–4453. doi: 10.1111/bph.13225. PubMed DOI PMC

Chen Y., Zhao W., Liu C., Meng W., Zhao T., Bhattacharya S.K., Sun Y. Molecular and cellular effect of angiotensin 1-7 on hypertensive kidney disease. Am. J. Hypertens. 2019;32:460–467. doi: 10.1093/ajh/hpz009. PubMed DOI PMC

Marcus Y., Shefer G., Sasson K., Kohen F., Limor R., Pappo O., Nevo N., Biton I., Bach M., Berkutzki T., et al. Angiotensin 1-7 as means to prevent the metabolic syndrome lessons from the fructose-fed rat model. Diabetes. 2013;62:1121–1130. doi: 10.2337/db12-0792. PubMed DOI PMC

El Hajj E.C., El Hajj M.C., Ninh V.K., Gardner J.D. Featured Article: Cardioprotective effects of lysyl oxidase inhibition against volume overload-induced extracellular matrix remodeling. Exp. Biol. Med. 2016;241:539–549. doi: 10.1177/1535370215616511. PubMed DOI PMC

Shaqura M., Mohamed D.M., Aboryag N.B., Bedewi L., Dehe L., Treskatsch S., Shakibaei M., Schäfer M., Mousa S.A. Pathological alterations in liver injury following congestive heart failure induced by volume overload in rats. PLoS ONE. 2017;12:e0184161. doi: 10.1371/journal.pone.0184161. PubMed DOI PMC

Fu L., Wei C.C., Powell P.C., Bradley W.E., Collawn J.F., Dell’Italia L.J. Volume overload induces autophagic degradation of procollagen in cardiac fibroblasts. J. Mol. Cell. Cardiol. 2015;89:241–250. doi: 10.1016/j.yjmcc.2015.10.027. PubMed DOI PMC

Guido M.C., De Carvalho Frimm C., Koike M.K., Cordeiro F.F., Moretti A.I.S., Godoy L.C. Low coronary driving pressure is associated with subendocardial remodelling and left ventricular dysfunction in aortocaval fistula. Clin. Exp. Pharmacol. Physiol. 2007;34:1165–1172. doi: 10.1111/j.1440-1681.2007.04689.x. PubMed DOI

Li H., Simon H., Bocan T.M.A., Peterson J.T. MMP/TIMP expression in spontaneously hypertensive heart failure rats: The effect of ACE- and MMP-inhibition. Cardiovasc. Res. 2000;46:298–306. doi: 10.1016/S0008-6363(00)00028-6. PubMed DOI

Tang B., Kang P., Zhu L., Xuan L., Wang H., Zhang H., Wang X., Xu J. Simvastatin protects heart function and myocardial energy metabolism in pulmonary arterial hypertension induced right heart failure. J. Bioenerg. Biomembr. 2021;53:1–12. doi: 10.1007/s10863-020-09867-z. PubMed DOI

Mohammadi K., Rouet-Benzineb P., Laplace M., Crozatier B. Protein kinase C activity and expression in rabbit left ventricular hypertrophy. J. Mol. Cell. Cardiol. 1997;29:1687–1694. doi: 10.1006/jmcc.1997.0411. PubMed DOI

Fryer L.G.D., Holness M.J., Decock J.B.J., Sugden M.C. Cardiac protein kinase C expression in two models of cardiac hypertrophy associated with an activated cardiac renin-angiotensin system: Effects of experimental hyperthyroidism and genetic hypertension (the mRen-2 rat) J. Endocrinol. 1998;158:27–33. doi: 10.1677/joe.0.1580027. PubMed DOI

Dorn G.W., Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Investig. 2005;115:527–537. doi: 10.1172/jci200524178. PubMed DOI PMC

Chatterjee E., Chaudhuri R.D., Sarkar S. Cardiomyocyte targeted overexpression of IGF1 during detraining restores compromised cardiac condition via mTORC2 mediated switching of PKCδ to PKCα. Biochim. Biophys. Acta—Mol. Basis Dis. 2019;1865:2736–2752. doi: 10.1016/j.bbadis.2019.07.003. PubMed DOI

Duquesnes N., Lezoualc’h F., Crozatier B. PKC-delta and PKC-epsilon: Foes of the same family or strangers? J. Mol. Cell. Cardiol. 2011;51:665–673. doi: 10.1016/j.yjmcc.2011.07.013. PubMed DOI

Tribulova N., Bacova B.S., Benova T.E., Knezl V., Barancik M., Slezak J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients. 2017;9:1191. doi: 10.3390/nu9111191. PubMed DOI PMC

Bačová B.S., Vinczenzová C., Žurmanová J., Kašparová D., Knezl V., Beňová T.E., Pavelka S., Soukup T., Tribulová N. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochem. Cell Biol. 2017;147:63–73. doi: 10.1007/s00418-016-1488-6. PubMed DOI

Guggilam A., Hutchinson K.R., West T.A., Kelly A.P., Galantowicz M.L., Davidoff A.J., Sadayappan S., Lucchesi P.A. In vivo and in vitro cardiac responses to beta-adrenergic stimulation in volume-overload heart failure. J. Mol. Cell. Cardiol. 2013;57:47–58. doi: 10.1016/j.yjmcc.2012.11.013. PubMed DOI PMC

Cao L., Chen Y., Lu L., Liu Y., Wang Y., Fan J., Yin Y. Angiotensin II upregulates fibroblast-myofibroblast transition through Cx43-dependent CaMKII and TGF-β1 signaling in neonatal rat cardiac fibroblasts. Acta Biochim. Biophys. Sin. 2018;50:843–852. doi: 10.1093/abbs/gmy090. PubMed DOI

Lampe P.D., Lau A.F. The effects of connexin phosphorylation on gap junctional communication. Int. J. Biochem. Cell Biol. 2004;36:1171–1186. doi: 10.1016/S1357-2725(03)00264-4. PubMed DOI PMC

Bacova B.S., Radosinska J., Wallukat G., Barancik M., Wallukat A., Knezl V., Sykora M., Paulis L., Tribulova N. Suppression of β1-adrenoceptor autoantibodies is involved in the antiarrhythmic effects of omega-3 fatty acids in male and female hypertensive rats. Int. J. Mol. Sci. 2020;21:526. doi: 10.3390/ijms21020526. PubMed DOI PMC

Szeiffová Bačova B., Egan Beňová T., Viczenczová C., Soukup T., Raučhová H., Pavelka S., Knezl V., Barancík M., Tribulová N. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol. Res. 2016;65:S77–S90. PubMed

Lin H., Mitasikova M., Dlugosova K., Okruhlicova L., Imanaga I., Ogawa K., Weismann P., Tribulova N. Thyroid hormones suppress ε-PKC signalling, down-regulate connexin-43 and increase lethal arrhythmia susceptibility in non-diabetic and diabetic rat hearts. J. Physiol. Pharmacol. 2008;59:271–285. PubMed

Cone A.C., Cavin G., Ambrosi C., Hakozaki H., Wu-Zhang A.X., Kunkel M.T., Newton A.C., Sosinsky G.E. Protein Kinase Cδ-mediated Phosphorylation of Connexin43 Gap Junction Channels Causes Movement within Gap Junctions followed by Vesicle Internalization and Protein Degradation. J. Biol. Chem. 2014;289:8781–8798. doi: 10.1074/jbc.M113.533265. PubMed DOI PMC

Pun R., North M.H.K. and B.J. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front. Cardiovasc. Med. 2023;9:1080131. doi: 10.3389/fcvm.2022.1080131. PubMed DOI PMC

Santos R.A.S., Ferreira A.J., Nadu A.P., Braga A.N.G., De Almeida A.P., Campagnole-Santos M.J., Baltatu O., Iliescu R., Reudelhuber T.L., Bader M. Expression of an angiotensin-(1-7)-producing fusion protein produces cardioprotective effects in rats. Physiol. Genomics. 2004;17:292–299. doi: 10.1152/physiolgenomics.00227.2003. PubMed DOI

Mullins J.J., Peters J., Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–544. PubMed

Rong P., Campbell D.J., Skinner S.L. Hypertension in the (mRen-2)27 rat is not explained by enhanced kinetics of transgenic Ren-2 renin. Hypertension. 2003;42:523–527. doi: 10.1161/01.HYP.0000093383.18302.A7. PubMed DOI

Kratky V., Kopkan L., Kikerlova S., Huskova Z., Taborsky M., Sadowski J., Kolar F., Cervenka L. The role of renal vascular reactivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press. Res. 2018;43:1730–1741. doi: 10.1159/000495391. PubMed DOI

Bacova B.S., Viczenczova C., Andelova K., Sykora M., Chaudagar K., Barancik M., Adamcova M., Knezl V., Benova T.E., Weismann P., et al. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants. 2020;9:546. doi: 10.3390/antiox9060546. PubMed DOI PMC

Barancik M., Bohacova V., Gibalova L., Sedlak J., Sulova Z., Breier A. Potentiation of anticancer drugs: Effects of pentoxifylline on neoplastic cells. Int. J. Mol. Sci. 2012;13:369–382. doi: 10.3390/ijms13010369. PubMed DOI PMC

Benova T., Viczenczova C., Radosinska J., Bacova B., Knezl V., Dosenko V., Weismann P., Zeman M., Navarova J., Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethalarrhythmias. Can. J. Physiol. Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI

Andelova K., Szeiffova Bacova B., Sykora M., Pavelka S., Rauchova H., Tribulova N. Cardiac Cx43 Signaling Is Enhanced and TGF-β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM. Biomedicines. 2022;10:1707. doi: 10.3390/biomedicines10071707. PubMed DOI PMC

Szobi A., Farkašová-Ledvényiová V., Lichý M., Muráriková M., Čarnická S., Ravingerová T., Adameová A. Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J. Cell. Mol. Med. 2018;22:4183–4196. doi: 10.1111/jcmm.13697. PubMed DOI PMC

Shlafer M., Shepard B.M. A method to reduce interference by sucrose in the detection of thiobarbituric acid-reactive substances. Anal. Biochem. 1984;137:269–276. doi: 10.1016/0003-2697(84)90084-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...