Electrical Remodeling of Pressure Overloaded Rat Heart Is Attenuated if Imposed During Proliferative Cardiac Growth
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
NU21J-02-00039
Czech Health Research Council
207029
Charles University Cooperatio
PubMed
41090321
PubMed Central
PMC12522080
DOI
10.1111/apha.70118
Knihovny.cz E-zdroje
- Klíčová slova
- arrhythmias, connexin 43, electrophysiology, hyperplasia, hypertrophy, left ventricle pressure overload, neonatal rat,
- MeSH
- kardiomyocyty fyziologie metabolismus MeSH
- konexin 43 metabolismus MeSH
- krysa rodu Rattus MeSH
- potkani Sprague-Dawley MeSH
- proliferace buněk fyziologie MeSH
- remodelace komor * fyziologie MeSH
- srdce * růst a vývoj patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- konexin 43 MeSH
AIM: Left ventricular pressure overload (LVPO) in adults is associated with adverse electrical remodeling, characterized by reduced conduction velocity (CV). However, the progression of LVPO differs when imposed during the proliferative phase of cardiac development. It remains unknown how increased cardiomyocyte proliferation affects LVPO electrical remodeling. METHODS: CV maturation from rat postnatal day (PD) 1 to PD90 and analyzed underlying connexin 43 (Cx43) profile. Pressure overload was induced by abdominal aortic constriction (AAC) in rats during the proliferative phase of cardiac growth (PD2). Animals subjected to AAC during the non-proliferative heart growth (AAC-PD6) and Sham-operated rats served as controls. Electrical remodeling was assessed at PD21 using ECG, optical mapping, western blots, immunofluorescence, and lipidomic analysis, complemented by functional analyses through echocardiography. RESULTS: Pressure overload led to a 2.5-fold increase in heart weight compared to Sham in both AAC groups. A significant increase in relative left ventricular wall thickening was observed in AAC-PD2 rats only. Optical mapping and ECG showed preserved conduction properties in AAC-PD2 animals, whereas the AAC-PD6 group displayed prolonged QRS and significantly reduced longitudinal CV. While total and phosphorylated Cx43 levels were comparable between the AAC groups, AAC-PD2 animals demonstrated higher intercalated disc localization. Furthermore, lipidomic profiling revealed maintained long-chain acylcarnitine (LCAC) levels in AAC-PD2, whereas AAC-PD6 tended toward LCAC accumulation. CONCLUSION: This study provides new insights into the remodeling upon pressure overload during cardiac proliferative growth, demonstrating attenuated electrical alteration by preserved CV and highlighting the role of Cx43 localization and preserved levels of LCACs.
1st Faculty of Medicine Institute of Anatomy Charles University Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Dai H., Bragazzi N. L., Younis A., et al., “Worldwide Trends in Prevalence, Mortality, and Disability‐Adjusted Life Years for Hypertensive Heart Disease From 1990 to 2017,” Hypertension 77, no. 4 (2021): 1223–1233. PubMed
Ruilope L. M. and Schmieder R. E., “Left Ventricular Hypertrophy and Clinical Outcomes in Hypertensive Patients,” American Journal of Hypertension 21, no. 5 (2008): 500–508. PubMed
Cuspidi C., Sala C., Negri F., Mancia G., and Morganti A., “Prevalence of Left‐Ventricular Hypertrophy in Hypertension: An Updated Review of Echocardiographic Studies,” Journal of Human Hypertension 26, no. 6 (2012): 343–349. PubMed
Joyce W., Shiels H. A., and Franklin C. E., “The Integrative Biology of the Heart: Mechanisms Enabling Cardiac Plasticity,” Journal of Experimental Biology 227, no. 20 (2024): jeb249348. PubMed
Li F., Wang X., Capasso J. M., and Gerdes A. M., “Rapid Transition of Cardiac Myocytes From Hyperplasia to Hypertrophy During Postnatal Development,” Journal of Molecular and Cellular Cardiology 28, no. 8 (1996): 1737–1746, 10.1006/jmcc.1996.0163. PubMed DOI
Mollova M., Bersell K., Walsh S., et al., “Cardiomyocyte Proliferation Contributes to Heart Growth in Young Humans,” Proceedings of the National Academy of Sciences of the United States of America 110, no. 4 (2013): 1446–1451. PubMed PMC
Aiba T. and Tomaselli G. F., “Electrical Remodeling in the Failing Heart,” Current Opinion in Cardiology 25, no. 1 (2010): 29–36. PubMed PMC
Zhao Y., Iyer S., Tavanaei M., Nguyen N. T., Lin A., and Nguyen T. P., “Proarrhythmic Electrical Remodeling by Noncardiomyocytes at Interfaces With Cardiomyocytes Under Oxidative Stress,” Frontiers in Physiology 11 (2021): 622613, 10.3389/fphys.2020.622613. PubMed DOI PMC
Danik S. B., Rosner G., Lader J., Gutstein D. E., Fishman G. I., and Morley G. E., “Electrical Remodeling Contributes to Complex Tachyarrhythmias in connexin43‐Deficient Mouse Hearts,” FASEB Journal 22, no. 4 (2008): 1204–1212. PubMed PMC
Peng D.‐W., Lai Y.‐Y., Luo X.‐S., et al., “Connexin 43 Participates in Atrial Electrical Remodelling Through Colocalization With Calcium Channels in Atrial Myocytes,” Clinical and Experimental Pharmacology & Physiology 49, no. 1 (2022): 25–34. PubMed
Boulaksil M., Winckels S. K. G., Engelen M. A., et al., “Heterogeneous Connexin43 Distribution in Heart Failure Is Associated With Dispersed Conduction and Enhanced Susceptibility to Ventricular Arrhythmias,” European Journal of Heart Failure 12, no. 9 (2010): 913–921. PubMed
Haider A. W., Larson M. G., Benjamin E. J., and Levy D., “Increased Left Ventricular Mass and Hypertrophy Are Associated With Increased Risk for Sudden Death,” Journal of the American College of Cardiology 32, no. 5 (1998): 1454–1459. PubMed
Levy D., Anderson K. M., Savage D. D., Balkus S. A., Kannel W. B., and Castelli W. P., “Risk of Ventricular Arrhythmias in Left Ventricular Hypertrophy: The Framingham Heart Study,” American Journal of Cardiology 60, no. 7 (1987): 560–565. PubMed
Nadarajah R., Patel P. A., and Tayebjee M. H., “Is Hypertensive Left Ventricular Hypertrophy a Cause of Sustained Ventricular Arrhythmias in Humans?,” Journal of Human Hypertension 35, no. 6 (2021): 492–498. PubMed PMC
Myerburg R. J., “Sudden Cardiac Death: Exploring the Limits of Our Knowledge,” Journal of Cardiovascular Electrophysiology 12, no. 3 (2001): 369–381. PubMed
Rosamond W., Flegal K., Furie K., et al., “Heart Disease and Stroke Statistics—2008 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation 117, no. 4 (2008): e25–e146. PubMed
Boulaksil M., Bierhuizen M. F. A., Engelen M. A., et al., “Spatial Heterogeneity of Cx43 Is an Arrhythmogenic Substrate of Polymorphic Ventricular Tachycardias During Compensated Cardiac Hypertrophy in Rats,” Frontiers in Cardiovascular Medicine 3 (2016): 5. PubMed PMC
Fontes M. S. C., Raaijmakers A. J. A., van Doorn T., et al., “Changes in Cx43 and NaV1.5 Expression Precede the Occurrence of Substantial Fibrosis in Calcineurin‐Induced Murine Cardiac Hypertrophy,” PLoS One 9, no. 1 (2014): e87226. PubMed PMC
Kostin S., Dammer S., Hein S., Klovekorn W. P., Bauer E. P., and Schaper J., “Connexin 43 Expression and Distribution in Compensated and Decompensated Cardiac Hypertrophy in Patients With Aortic Stenosis,” Cardiovascular Research 62, no. 2 (2004): 426–436. PubMed
Billur D., Olgar Y., and Turan B., “Intracellular Redistribution of Left Ventricular Connexin 43 Contributes to the Remodeling of Electrical Properties of the Heart in Insulin‐Resistant Elderly Rats,” Journal of Histochemistry and Cytochemistry 70, no. 6 (2022): 447–462. PubMed PMC
Sedmera D., Neckar J., Benes J., et al., “Changes in Myocardial Composition and Conduction Properties in Rat Heart Failure Model Induced by Chronic Volume Overload,” Frontiers in Physiology 7 (2016): 367, 10.3389/fphys.2016.00367. PubMed DOI PMC
Azevedo P. S., Polegato B. F., Minicucci M. F., Paiva S. A. R., and Zornoff L. A. M., “Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment,” Arquivos Brasileiros de Cardiologia 106, no. 1 (2016): 62–69. PubMed PMC
Graham H. K., Horn M., and Trafford A. W., “Extracellular Matrix Profiles in the Progression to Heart Failure,” Acta Physiologica 194, no. 1 (2008): 3–21. PubMed
Aitken‐Buck H. M., Krause J., Zeller T., Jones P. P., and Lamberts R. R., “Long‐Chain Acylcarnitines and Cardiac Excitation‐Contraction Coupling: Links to Arrhythmias,” Frontiers in Physiology 11 (2020): 577856, 10.3389/fphys.2020.577856. PubMed DOI PMC
van Bilsen M. and Planavila A., “Fatty Acids and Cardiac Disease: Fuel Carrying a Message,” Acta Physiologica 211, no. 3 (2014): 476–490. PubMed
Vornanen M., “Force‐Frequency Relationship, Contraction Duration and Recirculating Fraction of Calcium in Postnatally Developing Rat Heart Ventricles: Correlation With Heart Rate,” Acta Physiologica Scandinavica 145, no. 4 (1992): 311–321. PubMed
Kannan S. and Kwon C., “Regulation of Cardiomyocyte Maturation During Critical Perinatal Window,” Journal of Physiology 598, no. 14 (2020): 2941–2956. PubMed PMC
Boulgakoff L., Sturny R., Olejnickova V., Sedmera D., Kelly R. G., and Miquerol L., “Participation of Ventricular Trabeculae in Neonatal Cardiac Regeneration Leads to Ectopic Recruitment of Purkinje‐Like Cells,” Nature Cardiovascular Research 3, no. 9 (2024): 1140–1157. PubMed
Mohammadi M. M., Abouissa A., Azizah I., et al., “Induction of Cardiomyocyte Proliferation and Angiogenesis Protects Neonatal Mice From Pressure Overload–Associated Maladaptation,” JCI Insight 5, no. 16 (2019): e128336, 10.1172/jci.insight.128336. PubMed DOI PMC
Haubner B. J., Adamowicz‐Brice M., Khadayate S., et al., “Complete Cardiac Regeneration in a Mouse Model of Myocardial Infarction,” Aging (Albany NY) 4, no. 12 (2012): 966–977. PubMed PMC
Porrello E. R., Mahmoud A. I., Simpson E., et al., “Transient Regenerative Potential of the Neonatal Mouse Heart,” Science 331, no. 6020 (2011): 1078–1080. PubMed PMC
Porrello E. R. and Olson E. N., “A Neonatal Blueprint for Cardiac Regeneration,” Stem Cell Research 13, no. 3 Pt B (2014): 556–570. PubMed PMC
Angst B. D., Khan L. U., Severs N. J., et al., “Dissociated Spatial Patterning of Gap Junctions and Cell Adhesion Junctions During Postnatal Differentiation of Ventricular Myocardium,” Circulation Research 80, no. 1 (1997): 88–94. PubMed
Vreeker A., van Stuijvenberg L., Hund T. J., Mohler P. J., Nikkels P. G. J., and van Veen T. A. B., “Assembly of the Cardiac Intercalated Disk During Pre‐ and Postnatal Development of the Human Heart,” PLoS One 9, no. 4 (2014): e94722. PubMed PMC
Rhodes J. F., Hijazi Z. M., and Sommer R. J., “Pathophysiology of Congenital Heart Disease in the Adult, Part II,” Circulation 117, no. 9 (2008): 1228–1237. PubMed
Stout K. K., Broberg C. S., Book W. M., et al., “Chronic Heart Failure in Congenital Heart Disease: A Scientific Statement From the American Heart Association,” Circulation 133, no. 8 (2016): 770–801. PubMed
Kolář F., Papoušek F., Pelouch V., Ošťádal B., and Rakusan K., “Pressure Overload Induced in Newborn Rats: Effects on Left Ventricular Growth, Morphology, and Function,” Pediatric Research 43, no. 4 (1998): 521–526. PubMed
Novotny J., Hrbasová M., Kolář F., and Svoboda P., “Cardiomegaly Induced by Pressure Overload in Newborn Rats Is Accompanied by Altered Expression of the Long Isoform of Gsα Protein and Deranged Signaling of Adenylyl Cyclase,” Molecular and Cellular Biochemistry 245, no. 1 (2003): 157–166. PubMed
Sedmera D., Thompson R. P., and Kolar F., “Effect of Increased Pressure Loading on Heart Growth in Neonatal Rats,” Journal of Molecular and Cellular Cardiology 35, no. 3 (2003): 301–309. PubMed
Ahmed R. E., Tokuyama T., Anzai T., Chanthra N., and Uosaki H., “Sarcomere Maturation: Function Acquisition, Molecular Mechanism, and Interplay With Other Organelles,” Philosophical Transactions of the Royal Society, B: Biological Sciences 377 (2022): 20210325, 10.1098/rstb.2021.0325. PubMed DOI PMC
Campbell S. E., Rakusan K., and Gerdes A. M., “Change in Cardiac Myocyte Size Distribution in Aortic‐Constricted Neonatal Rats,” Basic Research in Cardiology 84, no. 3 (1989): 247–258. PubMed
Nassal M. M. J., Werdich A. A., Wan X., et al., “Phosphorylation at Connexin43 Serine‐368 Is Necessary for Myocardial Conduction During Metabolic Stress,” Journal of Cardiovascular Electrophysiology 27, no. 1 (2016): 110–119. PubMed PMC
Dambrova M., Makrecka‐Kuka M., Kuka J., et al., “Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials,” Pharmacological Reviews 74, no. 3 (2022): 506–551. PubMed
Rennison J. H. and Van Wagoner D. R., “Impact of Dietary Fatty Acids on Cardiac Arrhythmogenesis,” Circulation: Arrhythmia and Electrophysiology 2, no. 4 (2009): 460–469. PubMed PMC
Krause J., Nickel A., Madsen A., et al., “An Arrhythmogenic Metabolite in Atrial Fibrillation,” Journal of Translational Medicine 21 (2023): 566. PubMed PMC
Ai X. and Pogwizd S. M., “Connexin 43 Downregulation and Dephosphorylation in Nonischemic Heart Failure Is Associated With Enhanced Colocalized Protein Phosphatase Type 2A,” Circulation Research 96, no. 1 (2005): 54–63. PubMed
Yan J., Killingsworth C., Walcott G., et al., “Molecular Remodeling of Cx43, but Not Structural Remodeling, Promotes Arrhythmias in an Arrhythmogenic Canine Model of Nonischemic Heart Failure,” Journal of Molecular and Cellular Cardiology 158 (2021): 72–81. PubMed PMC
Salameh S., Ogueri V., and Posnack N. G., “Adapting to a New Environment: Postnatal Maturation of the Human Cardiomyocyte,” Journal of Physiology 601, no. 13 (2023): 2593–2619. PubMed PMC
Zhang J., Cao L., Tan Y., Zheng Y., and Gui Y., “ PubMed
Li Y., Ke J., Peng C., Wu F., and Song Y., “microRNA‐300/NAMPT Regulates Inflammatory Responses Through Activation of AMPK/mTOR Signaling Pathway in Neonatal Sepsis,” Biomedicine & Pharmacotherapy 108 (2018): 271–279. PubMed
Haubner B. J., Schneider J., Schweigmann U., et al., “Functional Recovery of a Human Neonatal Heart After Severe Myocardial Infarction,” Circulation Research 118, no. 2 (2016): 216–221. PubMed
Ding X., Wang S., Wang Y., et al., “Neonatal Heart Responds to Pressure Overload With Differential Alterations in Various Cardiomyocyte Maturation Programs That Accommodate Simultaneous Hypertrophy and Hyperplasia,” Frontiers in Cell and Development Biology 8 (2020): 596960. PubMed PMC
Jarabicová I., Horváth C., Hrdlička J., et al., “Necrosis‐Like Cell Death Modes in Heart Failure: The Influence of Aetiology and the Effects of RIP3 Inhibition,” Basic Research in Cardiology 120, no. 2 (2025): 373–392. PubMed PMC
Koenig X., Dysek S., Kimbacher S., et al., “Voltage‐Gated Ion Channel Dysfunction Precedes Cardiomyopathy Development in the Dystrophic Heart,” PLoS One 6, no. 5 (2011): e20300. PubMed PMC
Koenig X., Rubi L., Obermair G. J., et al., “Enhanced Currents Through L‐Type Calcium Channels in Cardiomyocytes Disturb the Electrophysiology of the Dystrophic Heart,” American Journal of Physiology ‐ Heart and Circulatory Physiology 306, no. 4 (2014): H564–H573. PubMed PMC
Rubi L., Gawali V. S., Kubista H., Todt H., Hilber K., and Koenig X., “Proper Voltage‐Dependent Ion Channel Function in Dysferlin‐Deficient Cardiomyocytes,” Cellular Physiology and Biochemistry 36, no. 3 (2015): 1049–1058. PubMed
Rubi L., Todt H., Kubista H., Koenig X., and Hilber K., “Calcium Current Properties in Dystrophin‐Deficient Ventricular Cardiomyocytes From Aged mdx Mice,” Physiological Reports 6, no. 1 (2018): e13567. PubMed PMC
Mirza M., Strunets A., Shen W.‐K., and Jahangir A., “Mechanisms of Arrhythmias and Conduction Disorders in Older Adults,” Clinics in Geriatric Medicine 28, no. 4 (2012): 555–573. PubMed PMC
Wulfsohn D., Nyengaard J. R., and Tang Y., “Postnatal Growth of Cardiomyocytes in the Left Ventricle of the Rat,” Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 277, no. 1 (2004): 236–247. PubMed
Korecky B. and Rakusan K., “Normal and Hypertrophic Growth of the Rat Heart: Changes in Cell Dimensions and Number,” American Journal of Physiology 234, no. 2 (1978): H123–H128. PubMed
Anversa P., Olivetti G., and Loud A. V., “Morphometric Study of Early Postnatal Development in the Left and Right Ventricular Myocardium of the Rat. I. Hypertrophy, Hyperplasia, and Binucleation of Myocytes,” Circulation Research 46, no. 4 (1980): 495–502. PubMed
Mayhew T. M., Pharaoh A., Austin A., and Fagan D. G., “Stereological Estimates of Nuclear Number in Human Ventricular Cardiomyocytes Before and After Birth Obtained Using Physical Disectors,” Journal of Anatomy 191, no. Pt 1 (1997): 107–115. PubMed PMC
Haq K. T., McLean K., Salameh S., Swift L. M., and Posnack N. G., “Electroanatomical Adaptations in the Guinea Pig Heart From Neonatal to Adulthood,” Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology 26, no. 7 (2024): euae158. PubMed PMC
Spach M. S., Heidlage J. F., Dolber P. C., and Barr R. C., “Electrophysiological Effects of Remodeling Cardiac Gap Junctions and Cell Size,” Circulation Research 86, no. 3 (2000): 302–311. PubMed
Haq K. T., Cooper B. L., Berk F., and Posnack N. G., “The Effect of Sex and Age on Ex Vivo Cardiac Electrophysiology: Insight From a Guinea Pig Model,” American Journal of Physiology ‐ Heart and Circulatory Physiology 324, no. 1 (2023): H141–H154. PubMed PMC
Ruhr I. M., Shiels H. A., Crossley D. A., and Galli G. L. J., “Developmental Programming of Sarcoplasmic Reticulum Function Improves Cardiac Anoxia Tolerance in Turtles,” Journal of Experimental Biology 227, no. 20 (2024): jeb247434. PubMed
Swift L. M., Burke M., Guerrelli D., et al., “Age‐Dependent Changes in Electrophysiology and Calcium Handling: Implications for Pediatric Cardiac Research,” American Journal of Physiology. Heart and Circulatory Physiology 318, no. 2 (2020): H354–H365. PubMed PMC
Clubb F. J. and Bishop S. P., “Formation of Binucleated Myocardial Cells in the Neonatal Rat. An Index for Growth Hypertrophy,” Laboratory Investigation 50, no. 5 (1984): 571–577. PubMed
de Diego C., Chen F., Xie Y., et al., “Anisotropic Conduction Block and Reentry in Neonatal Rat Ventricular Myocyte Monolayers,” American Journal of Physiology. Heart and Circulatory Physiology 300, no. 1 (2011): H271–H278. PubMed PMC
Burstein B. and Nattel S., “Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation,” Journal of the American College of Cardiology 51, no. 8 (2008): 802–809. PubMed
Kitamura H., Ohnishi Y., Yoshida A., et al., “Heterogeneous Loss of connexin43 Protein in Nonischemic Dilated Cardiomyopathy With Ventricular Tachycardia,” Journal of Cardiovascular Electrophysiology 13, no. 9 (2002): 865–870. PubMed
Kitamura H., Yoshida A., Ohnishi Y., et al., “Correlation of connexin43 Expression and Late Ventricular Potentials in Nonischemic Dilated Cardiomyopathy,” Circulation Journal 67, no. 12 (2003): 1017–1021. PubMed
Salameh A., Krautblatter S., Karl S., et al., “The Signal Transduction Cascade Regulating the Expression of the Gap Junction Protein connexin43 by Beta‐Adrenoceptors,” British Journal of Pharmacology 158, no. 1 (2009): 198–208. PubMed PMC
Uzzaman M., Honjo H., Takagishi Y., et al., “Remodeling of Gap Junctional Coupling in Hypertrophied Right Ventricles of Rats With Monocrotaline‐Induced Pulmonary Hypertension,” Circulation Research 86, no. 8 (2000): 871–878. PubMed
Takanari H., Bourgonje V. J. A., Fontes M. S. C., et al., “Calmodulin/CaMKII Inhibition Improves Intercellular Communication and Impulse Propagation in the Heart and Is Antiarrhythmic Under Conditions When Fibrosis Is Absent,” Cardiovascular Research 111, no. 4 (2016): 410–421. PubMed PMC
Dhillon P. S., Gray R., Kojodjojo P., et al., “Relationship Between Gap‐Junctional Conductance and Conduction Velocity in Mammalian Myocardium,” Circulation. Arrhythmia and Electrophysiology 6, no. 6 (2013): 1208–1214. PubMed
Spach M. S., Dolber P. C., and Heidlage J. F., “Influence of the Passive Anisotropic Properties on Directional Differences in Propagation Following Modification of the Sodium Conductance in Human Atrial Muscle. A Model of Reentry Based on Anisotropic Discontinuous Propagation,” Circulation Research 62, no. 4 (1988): 811–832. PubMed
Thomas S. P., Kucera J. P., Bircher‐Lehmann L., Rudy Y., Saffitz J. E., and Kléber A. G., “Impulse Propagation in Synthetic Strands of Neonatal Cardiac Myocytes With Genetically Reduced Levels of connexin43,” Circulation Research 92, no. 11 (2003): 1209–1216. PubMed PMC
Ozaki S., Nakaya H., Gotoh Y., Azuma M., Kemmotsu O., and Kanno M., “Effects of Halothane and Enflurane on Conduction Velocity and Maximum Rate of Rise of Action Potential Upstroke in Guinea Pig Papillary Muscles,” Anesthesia and Analgesia 68, no. 3 (1989): 219–225. PubMed
Rohr S., Kucera J. P., and Kléber A. G., “Slow Conduction in Cardiac Tissue, I: Effects of a Reduction of Excitability Versus a Reduction of Electrical Coupling on Microconduction,” Circulation Research 83, no. 8 (1998): 781–794. PubMed
Entz M., George S. A., Zeitz M. J., Raisch T., Smyth J. W., and Poelzing S., “Heart Rate and Extracellular Sodium and Potassium Modulation of Gap Junction Mediated Conduction in Guinea Pigs,” Frontiers in Physiology 7 (2016): 16. PubMed PMC
Bosch L., de Haan J. J., Bastemeijer M., et al., “The Transverse Aortic Constriction Heart Failure Animal Model: A Systematic Review and Meta‐Analysis,” Heart Failure Reviews 26, no. 6 (2021): 1515–1524. PubMed PMC
Sykora M., Kratky V., Kopkan L., Tribulova N., and Szeiffova Bacova B., “Anti‐Fibrotic Potential of Angiotensin (1‐7) in Hemodynamically Overloaded Rat Heart,” International Journal of Molecular Sciences 24, no. 4 (2023): 3490. PubMed PMC
Axelsen J. S., Andersen S., Ringgaard S., et al., “Right Ventricular Diastolic Adaptation to Pressure Overload in Different Rat Strains,” Physiological Reports 12, no. 13 (2024): e16132. PubMed PMC
Tannu S., Allocco J., Yarde M., Wong P., and Ma X., “Experimental Model of Congestive Heart Failure Induced by Transverse Aortic Constriction in BALB/c Mice,” Journal of Pharmacological and Toxicological Methods 106 (2020): 106935. PubMed
Zi M., Stafford N., Prehar S., et al., “Cardiac Hypertrophy or Failure? ‐ A Systematic Evaluation of the Transverse Aortic Constriction Model in C57BL/6NTac and C57BL/6J Substrains,” Current Research in Physiology 1 (2019): 1–10. PubMed PMC
Novák F., Kolář F., Voců S., Vecka M., and Nováková O., “Pressure Overload Selectively Increases n‐3 PUFA in Myocardial Phospholipids During Early Postnatal Period,” Physiological Research 61, no. Suppl 1 (2012): S155–S163. PubMed
Salatzki J., Foryst‐Ludwig A., Bentele K., et al., “Adipose Tissue ATGL Modifies the Cardiac Lipidome in Pressure‐Overload‐Induced Left Ventricular Failure,” PLoS Genetics 14, no. 1 (2018): e1007171. PubMed PMC
Joss J. D., Hernan J., Collier R., and Cardenas A., “Perioperative Supplementation of Polyunsaturated Omega‐3 Fatty Acid for the Prevention of Atrial Fibrillation After Cardiothoracic Surgery,” American Journal of Health‐System Pharmacy: AJHP: Official Journal of the American Society of Health‐System Pharmacists 74, no. 1 (2017): e17–e23, 10.2146/ajhp150740. PubMed DOI
Jia X., Gao F., Pickett J. K., et al., “Association Between Omega‐3 Fatty Acid Treatment and Atrial Fibrillation in Cardiovascular Outcome Trials: A Systematic Review and Meta‐Analysis,” Cardiovascular Drugs and Therapy 35, no. 4 (2021): 793–800, 10.1007/s10557-021-07204-z. PubMed DOI
García‐Lunar I., Jorge I., Sáiz J., et al., “Metabolic Changes Contribute to Maladaptive Right Ventricular Hypertrophy in Pulmonary Hypertension Beyond Pressure Overload: An Integrative Imaging and Omics Investigation,” Basic Research in Cardiology 119, no. 3 (2024): 419–433. PubMed PMC
Ji R., Akashi H., Drosatos K., et al., “Increased De Novo Ceramide Synthesis and Accumulation in Failing Myocardium,” JCI Insight 2, no. 9 (2017): e82922, 10.1172/jci.insight.82922. PubMed DOI PMC
Bockus L. B., Jensen P. N., Fretts A. M., et al., “Plasma Ceramides and Sphingomyelins and Sudden Cardiac Death in the Cardiovascular Health Study,” JAMA Network Open 6, no. 11 (2023): e2343854. PubMed PMC
van D. B. O., Schuldt M., Algül S., et al., “Metabolomics in Severe Aortic Stenosis Reveals Intermediates of Nitric Oxide Synthesis as Most Distinctive Markers,” International Journal of Molecular Sciences 22, no. 7 (2021): 3569. PubMed PMC
Patel M. K., Economides A. P., and Byrne N. G., “Effects of Palmitoyl Carnitine on Perfused Heart and Papillary Muscle,” Journal of Cardiovascular Pharmacology and Therapeutics 4, no. 2 (1999): 85–96. PubMed
DaTorre S. D., Creer M. H., Pogwizd S. M., and Corr P. B., “Amphipathic Lipid Metabolites and Their Relation to Arrhythmogenesis in the Ischemic Heart,” Journal of Molecular and Cellular Cardiology 23, no. Suppl 1 (1991): 11–22. PubMed
Joukar S., “A Comparative Review on Heart Ion Channels, Action Potentials and Electrocardiogram in Rodents and Human: Extrapolation of Experimental Insights to Clinic,” Laboratory Animal Research 37, no. 1 (2021): 25. PubMed PMC
Edwards A. G. and Louch W. E., “Species‐Dependent Mechanisms of Cardiac Arrhythmia: A Cellular Focus,” Clinical Medicine Insights. Cardiology 11 (2017): 1179546816686061. PubMed PMC
van Ham W. B., Meijboom E. E. M., Ligtermoet M. L., Nikkels P. G. J., and van Veen T. A. B., “Maturation and Function of the Intercalated Disc: Report of Two Pediatric Cases Focusing on Cardiac Development and Myocardial Hyperplasia,” Journal of Cardiovascular Development and Disease 10, no. 8 (2023): 354. PubMed PMC
van Kempen M. J., ten Velde I., Wessels A., et al., “Differential Connexin Distribution Accommodates Cardiac Function in Different Species,” Microscopy Research and Technique 31, no. 5 (1995): 420–436. PubMed
Van Kempen M. J. A., Vermeulen J. L. M., Moorman A. F. M., Gros D., Paul D. L., and Lamers W. H., “Developmental Changes of connexin40 and connexin43 mRNA Distribution Patterns in the Rat Heart,” Cardiovascular Research 32, no. 5 (1996): 886–900. PubMed
Chkourko H. S., Guerrero‐Serna G., Lin X., et al., “Remodeling of Mechanical Junctions and of Microtubule‐Associated Proteins Accompany Cardiac connexin43 Lateralization,” Heart Rhythm 9, no. 7 (2012): 1133–1140. PubMed PMC
Günthel M., Barnett P., and Christoffels V. M., “Development, Proliferation, and Growth of the Mammalian Heart,” Molecular Therapy 26, no. 7 (2018): 1599–1609. PubMed PMC
Sedmera D. and Thompson R. P., “Myocyte Proliferation in the Developing Heart,” Developmental Dynamics 240, no. 6 (2011): 1322–1334. PubMed PMC
Nt L. and Ha S., “Neonatal Heart Regeneration: Comprehensive Literature Review,” Circulation 138, no. 4 (2018): 412–423, 10.1161/CIRCULATIONAHA.118.033648. PubMed DOI PMC
Zhu W., Zhang E., Zhao M., et al., “Regenerative Potential of Neonatal Porcine Hearts,” Circulation 138, no. 24 (2018): 2809–2816. PubMed PMC
Ye L., D'Agostino G., Loo S. J., et al., “Early Regenerative Capacity in the Porcine Heart,” Circulation 138, no. 24 (2018): 2798–2808. PubMed
Fratz S., Hager A., Schreiber C., Schwaiger M., Hess J., and Stern H. C., “Long‐Term Myocardial Scarring After Operation for Anomalous Left Coronary Artery From the Pulmonary Artery,” Annals of Thoracic Surgery 92, no. 5 (2011): 1761–1765. PubMed
Neckář J., Alánová P., Olejníčková V., et al., “Excess Ischemic Tachyarrhythmias Trigger Protection Against Myocardial Infarction in Hypertensive Rats,” Clinical Science (London, England) 135, no. 17 (2021): 2143–2163. PubMed
Hackl B., Zabrodska E., Gewessler S., et al., “The Type of Suture Material Affects Transverse Aortic Constriction‐Induced Heart Failure Development in Mice: A Repeated Measures Correlation Analysis,” Frontiers in Cardiovascular Medicine 10 (2023): 1242763. PubMed PMC
Kolarova J., Novakova M., Ronzhina M., et al., “Isolated Rabbit Hearts‐Databases of EGs and MAP Signals,” in Computing in Cardiology Conference (CinC) (IEEE, 2013), 551–554.
Tolboom H., Olejníčková V., Reser D., et al., “Moderate Hypothermia During Ex Vivo Machine Perfusion Promotes Recovery of Hearts Donated After Cardiocirculatory Death†,” European Journal of Cardio‐Thoracic Surgery 49, no. 1 (2016): 25–31. PubMed
Olejnickova V., Hamor P. U., Janacek J., et al., “Development of Ventricular Trabeculae Affects Electrical Conduction in the Early Endothermic Heart,” Developmental Dynamics 253, no. 1 (2024): 78–90. PubMed
Zabrodska E., Kvasilova A., Sedmera D., and Olejnickova V., “Electrical Remodeling of Atrioventricular Junction: A Study on Retrogradely Perfused Chick Embryonic Heart,” American Journal of Physiology. Heart and Circulatory Physiology 327, no. 3 (2024): H555–H564. PubMed PMC
Olejnickova V. and Sedmera D., “What Is the Optimal Light Source for Optical Mapping Using Voltage‐ and Calcium‐Sensitive Dyes?,” Physiological Research 69, no. 4 (2020): 599–607. PubMed PMC
Swift L. M., Asfour H., Posnack N. G., Arutunyan A., Kay M. W., and Sarvazyan N., “Properties of Blebbistatin for Cardiac Optical Mapping and Other Imaging Applications,” Pflugers Archiv: European Journal of Physiology 464, no. 5 (2012): 503–512. PubMed PMC
Morley G. E., Vaidya D., Samie F. H., Lo C., Delmar M., and Jalife J., “Characterization of Conduction in the Ventricles of Normal and Heterozygous Cx43 Knockout Mice Using Optical Mapping,” Journal of Cardiovascular Electrophysiology 10, no. 10 (1999): 1361–1375. PubMed
Olejnickova V., Kolesova H., Bartos M., Sedmera D., and Gregorovicova M., “The Tale‐Tell Heart: Evolutionary Tetrapod Shift From Aquatic to Terrestrial Life‐Style Reflected in Heart Changes in Axolotl ( PubMed
Kvasilova A., Olejnickova V., Jensen B., et al., “The Formation of the Atrioventricular Conduction Axis Is Linked in Development to Ventricular Septation,” Journal of Experimental Biology 223, no. Pt 19 (2020): jeb229278, 10.1242/jeb.229278. PubMed DOI
Kondratyev A. A., Ponard J. G. C., Munteanu A., Rohr S., and Kucera J. P., “Dynamic Changes of Cardiac Conduction During Rapid Pacing,” American Journal of Physiology. Heart and Circulatory Physiology 292, no. 4 (2007): H1796–H1811. PubMed
O'Shea C., Holmes A. P., Winter J., et al., “Cardiac Optogenetics and Optical Mapping – Overcoming Spectral Congestion in all‐Optical Cardiac Electrophysiology,” Frontiers in Physiology 10 (2019): 182, 10.3389/fphys.2019.00182. PubMed DOI PMC
Bruce A. F., Rothery S., Dupont E., and Severs N. J., “Gap Junction Remodelling in Human Heart Failure Is Associated With Increased Interaction of connexin43 With ZO‐1,” Cardiovascular Research 77, no. 4 (2008): 757–765. PubMed PMC
Folch J., Lees M., and Stanley G. H. S., “A Simple Method for the Isolation and Purification of Total Lipides From Animal Tissues,” Journal of Biological Chemistry 226, no. 1 (1957): 497–509. PubMed
Olejnickova V., Kocka M., Kvasilova A., et al., “Gap Junctional Communication via Connexin43 Between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle,” International Journal of Molecular Sciences 22, no. 5 (2021): 2475. PubMed PMC