The type of suture material affects transverse aortic constriction-induced heart failure development in mice: a repeated measures correlation analysis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
Grant support
I 4649
Austrian Science Fund FWF - Austria
P 31563
Austrian Science Fund FWF - Austria
PubMed
37795481
PubMed Central
PMC10546326
DOI
10.3389/fcvm.2023.1242763
Knihovny.cz E-resources
- Keywords
- TAC - transverse aortic constriction, heart failure, mice, repeated measures correlation analysis, suture material,
- Publication type
- Journal Article MeSH
INTRODUCTION: Transverse-aortic constriction (TAC) operation is a widely used animal model to induce hypertrophy and heart failure through left-ventricular pressure overload. In mice, the cardiac response to TAC exhibits considerable variability influenced by factors such as strain, sub-strain, age, sex and vendor. METHODS: To investigate the impact of suture material (silk versus prolene) and size (6-0 versus 7-0) on the TAC-induced phenotype, we performed surgeries on male C57BL6/N mice at 9 weeks of age defining the aortic constriction by a 27G needle, thereby employing most frequently used methodological settings. The mice were randomly assigned into four separate groups, 6-0 silk, 7-0 silk, 6-0 prolene and 7-0 prolene (10 mice per group). Echocardiography was conducted before TAC and every 4 weeks thereafter to monitor the development of heart failure. Repeated measures correlation analysis was employed to compare disease progression among the different groups. RESULTS: Our findings reveal a significant influence of the chosen suture material on TAC outcomes. Mice operated with prolene showed increased mortality, slower body weight gain, faster left-ventricular mass increase, and a faster decline in left-ventricular ejection fraction, fractional shortening and aortic pressure gradient compared to silk-operated mice. Moreover, despite non significant, using thinner suture threads (7-0) tended to result in a more severe phenotype compared to thicker threads (6-0) across all tested parameters. DISCUSSION: Collectively, our results highlight the importance of suture material selection in determining the cardiac phenotype induced by TAC and emphasize the need to consider this factor when comparing data across different research laboratories.
See more in PubMed
Rockman HA, Ross RS, Harris AN, Knowlton KU, SteinhelperT ME, FieldT LJ, et al. Segregation of atrial-specific, inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA (1991) 88(18):8277–81. 10.1073/pnas.88.18.8277 PubMed DOI PMC
Nagayama T, Hsu S, Zhang M, Koitabashi N, Bedja D, Gabrielson KL, et al. Pressure-overload magnitude-dependence of the anti-hypertrophic efficacy of PDE5a inhibition. J Mol Cell Cardiol. (2009) 46(4):560–7. 10.1016/j.yjmcc.2008.12.008 PubMed DOI PMC
Richards DA, Aronovitz MJ, Calamaras TD, Tam K, Martin GL, Liu P, et al. Distinct phenotypes induced by three degrees of transverse aortic constriction in mice. Sci Rep. (2019) 9(1):5844. 10.1038/s41598-019-42209-7 PubMed DOI PMC
Deng H, Ma L-L, Kong F-J, Qiao Z. Distinct phenotypes induced by different degrees of transverse aortic constriction in C57BL/6N mice. Front Cardiovasc Med. (2021) 8:641272. 10.3389/fcvm.2021.641272 PubMed DOI PMC
Garcia-Menendez L, Karamanlidis G, Kolwicz S, Tian R. Substrain specific response to cardiac pressure overload in C57BL/6 mice. Am J Physiol Heart Circ Physiol. (2013) 305(3):H397–H402. 10.1152/ajpheart.00088.2013 PubMed DOI PMC
Barrick CJ, Rojas M, Schoonhoven R, Smyth SS, Threadgill DW. Cardiac response to pressure overload in 129S1/SvImJ, C57BL/6J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Physiol Heart Circ Physiol. (2007) 292(5):H2119–30. 10.1152/ajpheart.00816.2006 PubMed DOI
Nickel A, von Hardenberg A, Hohl M, Löffler J, Kohlhaas M, Becker J, et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. (2015) 22(3):472–84. 10.1016/j.cmet.2015.07.008 PubMed DOI
Barrick CJ, Dong A, Waikel R, Corn D, Yang F, Threadgill DW, et al. Parent-of-origin effects on cardiac response to pressure overload in mice. Am J Physiol Heart Circ Physiol. (2009) 297(3):1003–9. 10.1152/ajpheart.00896.2008 PubMed DOI PMC
Geng X, Hwang J, Ye J, Shih H, Coulter B, Naudin C, et al. Aging is protective against pressure overload cardiomyopathy via adaptive extracellular matrix remodeling. Am J Cardiovasc Dis. (2017) 7(3):72–82. PubMed PMC
Skavdahl M, Steenbergen C, Clark J, Myers P, Demianenko T, Mao L, et al. Estrogen receptor- PubMed DOI
Liao Y, Ishikura F, Beppu S, Asakura M, Takashima S, Asanuma H, et al. Echocardiographic assessment of LV hypertrophy and function in aortic-banded mice: necropsy validation. Am J Physiol Heart Circ Physiol. (2002) 282(5):H1703–8. 10.1152/ajpheart.00238.2001 PubMed DOI
Rothermel BA, Berenji K, Tannous P, Kutschke W, Dey A, Nolan B, et al. Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure. Physiol Genomics. (2005) 23(1):18–27. 10.1152/physiolgenomics.00061.2005 PubMed DOI PMC
Bosch L, de Haan JJ, Bastemeijer M, van der Burg J, van der Worp E, Wesseling M, et al. The transverse aortic constriction heart failure animal model: a systematic review and meta-analysis. Heart Fail Rev. (2021) 26(6):1515–24. 10.1007/s10741-020-09960-w PubMed DOI PMC
Byrne M, Aly A. The surgical suture. Aesthet Surg J. (2019) 39(Suppl. 2):S67–S72. 10.1093/asj/sjz036 PubMed DOI
Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. (2017) 8:456. 10.3389/fpsyg.2017.00456 PubMed DOI PMC
Bland JM, Altman DG. Statistics notes: calculating correlation coefficients with repeated observations: part 1–correlation within subjects. BMJ. (1995a) 310:446. 10.1136/bmj.310.6977.446 PubMed DOI PMC
Bland JM, Altman DG. Statistics notes: calculating correlation coefficients with repeated observations: part 2–correlation between subjects. BMJ. (1995b) 310:633. 10.1136/bmj.310.6980.633 PubMed DOI PMC
Teichholz LE, Kreulen T, Herman MV, Gorlin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence or absence of asynergy. Am J Cardiol. (1976) 37(1):7–11. 10.1016/0002-9149(76)90491-4 PubMed DOI
Harris P, Kuppurao L. Quantitative doppler echocardiography. BJA Educ. (2016) 16(2):46–52. 10.1093/bjaceaccp/mkv015 DOI
Hermans H, Swinnen M, Pokreisz P, Caluwé E, Dymarkowski S, Herregods M-C, et al. Murine pressure overload models: a 30-MHz look brings a whole new “sound” into data interpretation. J Appl Physiol. (2014) 117(5):563–71. 10.1152/japplphysiol.00363.2014 PubMed DOI
Naleway SE, Lear W, Kruzic JJ, Maughan CB. Mechanical properties of suture materials in general and cutaneous surgery: an update on mechanical properties of suture materials. J Biomed Mater Res B Appl Biomater. (2015) 103(4):735–42. 10.1002/jbm.b.33171 PubMed DOI
Togo S, Kubota T, Takahashi T, Yoshida K, Matsuo K, Morioka D, et al. Usefulness of absorbable sutures in preventing surgical site infection in hepatectomy. J Gastrointest Surg. (2008) 12(6):1041–6. 10.1007/s11605-007-0297-6 PubMed DOI
Neubauer S. The failing heart—an engine out of fuel. N Engl J Med. (2007) 356(11):1140–51. 10.1056/NEJMra063052 PubMed DOI
Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure. Circ Res. (2013) 113(6):709–24. 10.1161/CIRCRESAHA.113.300376 PubMed DOI PMC
Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail. (2010) 3(3):420–30. 10.1161/CIRCHEARTFAILURE.109.888479 PubMed DOI
Chen X, Bollinger E, Cunio T, Damilano F, Stansfield JC, Pinkus CA, et al. An assessment of thermoneutral housing conditions on murine cardiometabolic function. Am J Physiol-Heart and Circulatory Physiology. (2022) 322(2):H234–45. 10.1152/ajpheart.00461.2021 PubMed DOI
Rau CD, Wang J, Avetisyan R, Romay MC, Martin L, Ren S, et al. Mapping genetic contributions to cardiac pathology induced by beta-adrenergic stimulation in mice. Circ Cardiovasc Genet. (2015) 8(1):40–9. 10.1161/CIRCGENETICS.113.000732 PubMed DOI PMC
Cell size induced bias of current density in hypertrophic cardiomyocytes