Cell size induced bias of current density in hypertrophic cardiomyocytes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 4649
Austrian Science Fund FWF - Austria
PubMed
38836323
PubMed Central
PMC11155701
DOI
10.1080/19336950.2024.2361416
Knihovny.cz E-zdroje
- Klíčová slova
- L-type calcium and sodium current density, Ventricular and Purkinje myocyte, bias, cell capacitance, cell size, trans-aortic constriction induced hypertrophy,
- MeSH
- kardiomegalie * metabolismus patologie MeSH
- kardiomyocyty * metabolismus patologie MeSH
- metoda terčíkového zámku MeSH
- myši MeSH
- velikost buňky * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Alterations in ion channel expression and function known as "electrical remodeling" contribute to the development of hypertrophy and to the emergence of arrhythmias and sudden cardiac death. However, comparing current density values - an electrophysiological parameter commonly utilized to assess ion channel function - between normal and hypertrophied cells may be flawed when current amplitude does not scale with cell size. Even more, common routines to study equally sized cells or to discard measurements when large currents do not allow proper voltage-clamp control may introduce a selection bias and thereby confound direct comparison. To test a possible dependence of current density on cell size and shape, we employed whole-cell patch-clamp recording of voltage-gated sodium and calcium currents in Langendorff-isolated ventricular cardiomyocytes and Purkinje myocytes, as well as in cardiomyocytes derived from trans-aortic constriction operated mice. Here, we describe a distinct inverse relationship between voltage-gated sodium and calcium current densities and cell capacitance both in normal and hypertrophied cells. This inverse relationship was well fit by an exponential function and may be due to physiological adaptations that do not scale proportionally with cell size or may be explained by a selection bias. Our study emphasizes the need to consider cell size bias when comparing current densities in cardiomyocytes of different sizes, particularly in hypertrophic cells. Conventional comparisons based solely on mean current density may be inadequate for groups with unequal cell size or non-proportional current amplitude and cell size scaling.
Zobrazit více v PubMed
Nattel S. Effects of heart disease on cardiac ion current density versus current amplitude: important conceptual subtleties in the language of arrhythmogenic ion channel remodeling. Circ Res. [2008 Jun 6];102(11):1298–9. doi: 10.1161/CIRCRESAHA.108.178087 PubMed DOI
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol. 2023. May;20(5):347–363. doi: 10.1038/s41569-022-00806-6 PubMed DOI PMC
Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018. Jul;15(7):387–407. doi: 10.1038/s41569-018-0007-y PubMed DOI
Zhang K, Wang S, Li X. Mechanism of ion channel impairment in the occurrence of arrhythmia in patients with hypertrophic cardiomyopathy. Cardiol Rev [Internet]. 2023. Oct 9. [cited 2024 Jan 12]. doi: 10.1097/CRD.0000000000000612 PubMed DOI PMC
Marionneau C, Brunet S, Flagg TP. Distinct cellular and molecular mechanisms underlie functional remodeling of repolarizing K + currents with left ventricular hypertrophy. Circ Res. [2008 Jun 6];102(11):1406–1415. doi: 10.1161/CIRCRESAHA.107.170050 PubMed DOI PMC
Liu QH, Qiao X, Zhang LJ. IK1 channel agonist zacopride alleviates cardiac hypertrophy and failure via alterations in calcium dyshomeostasis and electrical remodeling in rats. Front Pharmacol. [2019 Aug 26];10:929. doi: 10.3389/fphar.2019.00929 PubMed DOI PMC
Chen X, Nakayama H, Zhang X. Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2011. Mar;50(3):460–470. doi: 10.1016/j.yjmcc.2010.11.012 PubMed DOI PMC
Hart G. Cellular electrophysiology in cardiac hypertrophy and failure. Cardiovasc Res. [1994 Jul 1];28(7):933–946. doi: 10.1093/cvr/28.7.933 PubMed DOI
Bodi I, Muth JN, Hahn HS. Electrical remodeling in hearts from a calcium-dependent mouse model of hypertrophy and failure. J Am Coll Cardiol. 2003. May;41(9):1611–1622. doi: 10.1016/S0735-1097(03)00244-4 PubMed DOI
Akar FG, Rosenbaum DS. Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circ Res. [2003 Oct 3];93(7):638–645. doi: 10.1161/01.RES.0000092248.59479.AE PubMed DOI
Flenner F, Jungen C, Küpker N. Translational investigation of electrophysiology in hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2021. Aug;157:77–89. doi: 10.1016/j.yjmcc.2021.04.009 PubMed DOI PMC
Mukherjee R, Spinale FG. L-type calcium channel abundance and function with cardiac hypertrophy and failure: a review. J Mol Cell Cardiol. 1998. Oct;30(10):1899–1916. doi: 10.1006/jmcc.1998.0755 PubMed DOI
Rivaud MR, Agullo‐Pascual E, Lin X, Leo‐Macias A, Zhang M, Rothenberg E, Bezzina CR, Delmar M, Remme CA. Sodium channel remodeling in subcellular microdomains of murine failing cardiomyocytes [Internet]. 2017. [cited 2024 Jan 12]. Available from: doi: 10.1161/JAHA.117.007622 PubMed DOI PMC
Kula R, Bébarová M, P M. Current density as routine parameter for description of ionic membrane current: is it always the best option? Prog Biophys Mol Biol. 2020. Nov;157:24–32. doi: 10.1016/j.pbiomolbio.2019.11.011 PubMed DOI
Rockman HA, Ross RS, Harris AN. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci, USA. 1991;88(18):8277–8281. doi: 10.1073/pnas.88.18.8277 PubMed DOI PMC
Garcia-Menendez L, Karamanlidis G, Kolwicz S. Substrain specific response to cardiac pressure overload in C57BL/6 mice. Am J Physiol Heart Circ Physiol. [2013 Aug 1];305(3):H397–402. doi: 10.1152/ajpheart.00088.2013 PubMed DOI PMC
Nickel AG, von Hardenberg A, Hohl M. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 2015. Sep;22(3):472–484. doi: 10.1016/j.cmet.2015.07.008 PubMed DOI
Hackl B, Zabrodska E, Gewessler S. The type of suture material affects transverse aortic constriction-induced heart failure development in mice: a repeated measures correlation analysis. Front Cardiovasc Med. 2023;10:1242763. doi: 10.3389/fcvm.2023.1242763 PubMed DOI PMC
Koenig X, Dysek S, Kimbacher S. Voltage-gated ion channel dysfunction precedes cardiomyopathy development in the dystrophic heart. PLOS ONE. 2011. Jan;6(5):e20300. doi: 10.1371/journal.pone.0020300 PubMed DOI PMC
Miquerol L, Meysen S, Mangoni M. Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res. [2004 Jul 1];63(1):77–86. doi: 10.1016/j.cardiores.2004.03.007 PubMed DOI
Ebner J, Uhrin P, Szabo PL. Reduced Na + current in Purkinje fibers explains cardiac conduction defects and arrhythmias in Duchenne muscular dystrophy. Am J Physiol Heart Circ Physiol. [2020 Jun 1];318(6):H1436–40. doi: 10.1152/ajpheart.00224.2020 PubMed DOI
Sauer J, Marksteiner J, Lilliu E. Empagliflozin treatment rescues abnormally reduced Na currents in ventricular cardiomyocytes from dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol [Internet]. [cited 2023 Dec 15]. doi: 10.1152/ajpheart.00729.2023 PubMed DOI PMC
Vaidyanathan R, O’Connell RP, Deo M. The ionic bases of the action potential in isolated mouse cardiac Purkinje cell. Heart Rhythm. 2013. Jan;10(1):80–87. doi: 10.1016/j.hrthm.2012.10.002 PubMed DOI PMC
Rougier JS, Essers MC, Gillet L. A distinct pool of Nav1.5 channels at the lateral membrane of murine ventricular cardiomyocytes. Front Physiol. [2019 Jul 3];10:834. doi: 10.3389/fphys.2019.00834 PubMed DOI PMC
Petitprez S, Zmoos AF, Ogrodnik J. SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res. [2011 Feb 4];108(3):294–304. doi: 10.1161/CIRCRESAHA.110.228312 PubMed DOI
Lin X, Liu N, Lu J. Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes. Heart Rhythm. 2011. Dec;8(12):1923–1930. doi: 10.1016/j.hrthm.2011.07.016 PubMed DOI PMC
Carey PA, Turner M, Fry CH. Reduced anisotropy of action potential conduction in left ventricular hypertrophy. Cardiovasc Electrophysiol. 2001. Jul;12(7):830–835. doi: 10.1046/j.1540-8167.2001.00830.x PubMed DOI
Vermij SH, Rougier JS, Agulló-Pascual E. Single-molecule localization of the cardiac voltage-gated sodium channel reveals different modes of reorganization at cardiomyocyte membrane domains. Circ: Arrhythm Electrophysiol. 2020. Jul;13(7):e008241. doi: 10.1161/CIRCEP.119.008241 PubMed DOI PMC
Yang Z, Pascarel C, Steele DS. Na±Ca2+ Exchange activity Is localized in the T-Tubules of rat ventricular myocytes. Circ Res. [2002 Aug 23];91(4):315–322. doi: 10.1161/01.RES.0000030180.06028.23 PubMed DOI
Vermij SH, Abriel H, Kucera JP. A fundamental evaluation of the electrical properties and function of cardiac transverse tubules. Biochim Biophys Acta, Mol Cell Res. [2020 Mar 1];1867(3):118502. doi: 10.1016/j.bbamcr.2019.06.016 PubMed DOI
Vermij SH, Abriel H, Kucera JP. Modeling depolarization delay, sodium currents, and electrical potentials in cardiac transverse tubules. Front Physiol. [2019 Dec 10];10:1487. doi: 10.3389/fphys.2019.01487 PubMed DOI PMC
Remme CA, Scicluna BP, Verkerk AO. Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy. Circ Res. 2009. Jun;104(11):1283–1292. doi: 10.1161/CIRCRESAHA.109.194423 PubMed DOI
Brette F, Sallé L, Orchard CH. Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophys J. 2006. Jan;90(1):381–389. doi: 10.1529/biophysj.105.069013 PubMed DOI PMC
Liu Y, Zhou K, Li J. In mice subjected to chronic stress, exogenous cbin1 preserves calcium-handling machinery and cardiac function. JACC. 2020. Jun;5(6):561–578. doi: 10.1016/j.jacbts.2020.03.006 PubMed DOI PMC
Nuss H. Voltage dependence of contraction and calcium current in severely hypertrophied feline ventricular myocytes. J Mol Cell Cardiol. 1991. Jun;23(6):717–726. doi: 10.1016/0022-2828(91)90981-Q PubMed DOI
Curran-Everett D. Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ. 2013. Sep;37(3):213–219. doi: 10.1152/advan.00053.2013 PubMed DOI
Ebner J, Pan X, Yue Y. Microdystrophin therapy rescues impaired na currents in cardiac purkinje fibers from dystrophin-deficient mdx micE. Circ Arrhythm Electrophysiol. [2022 Aug 1];15(8):542–544. doi: 10.1161/CIRCEP.122.011161 PubMed DOI PMC